I am trying to write a function to give me a pivot table for two variables. Expanding my question here, I would like to include the p-value of a chi-square test for the relationship between the predictor and the target as well. How should I change the function?
library(dplyr)
mean_mpg <- mean(mtcars$mpg)
# creating a new variable that shows that Miles/(US) gallon is greater than the mean or not
mtcars <-
mtcars %>%
mutate(mpg_cat = ifelse(mpg > mean_mpg, 1,0))
mtcars %>%
group_by(as.factor(cyl)) %>%
summarise(sum=sum(mpg_cat),total=n()) %>%
mutate(percentage=sum*100/total)
# Note: needs installation of rlang 0.4.0 or later
get_pivot <- function(data, predictor,target) {
result <-
data %>%
group_by(as.factor( {{ predictor }} )) %>%
summarise(sum=sum( {{ target }} ),total=n()) %>%
mutate(percentage=sum*100/total);
print(result)
}
Here is my working example:
mtcars %>%
group_by(as.factor(cyl)) %>%
summarise(sum=sum(mpg_cat),total=n(),
pvalue= chisq.test(as.factor(.$mpg_cat), as.factor(.$cyl))$p.value) %>%
mutate(percentage=sum*100/total)
I tried the following function but it did not work.
get_pivot <- function(data, predictor,target) {
result <-
data %>%
group_by( {{ predictor }} ) %>%
summarise(clicks=sum( {{ target }} ),total=n(),
pvalue= chisq.test(.$target, .$predictor)$p.value) %>%
mutate(percentage=clicks*100/total);
print(result)
}
The {{...}}
curly-curly interpolation operator is a convenient way for quote-unquote. But, it wouldn't work in all the cases. In the OP's function, a column is extracted with $
ie. the part .$target
or .$predictor
wouldn't work. Instead, we could convert it to character
(as_name
) and then extract the column with [[
library(rlang)
library(dplyr)
get_pivot <- function(data, predictor,target) {
data %>%
group_by( {{ predictor }} ) %>%
summarise(clicks=sum( {{ target }} ),total=n(),
pvalue= chisq.test(.[[as_name(enquo(target))]],
.[[as_name(enquo(predictor))]])$p.value) %>%
mutate(percentage=clicks*100/total);
}
get_pivot(mtcars, cyl, mpg_cat)
# A tibble: 3 x 5
# cyl clicks total pvalue percentage
# <dbl> <dbl> <int> <dbl> <dbl>
#1 4 11 11 0.00000366 100
#2 6 3 7 0.00000366 42.9
#3 8 0 14 0.00000366 0