Link to code:
I'm using the sample python code from Google Speech API to convert long (greater than 1 minute) audio files from speech to text. How do I run the code in PyCharm so it converts my audio file (in wave format) to text using the API key I created (to charge my account) without getting the 'NoneType' error?
I added the path of the audio file directly into the code (line 73). I also added "--" in front of 'path' to make it process the LOC (line 73). The error I get is as follows:
**C:\Users\Dave\AppData\Local\Programs\Python\Python37\python.exe C:/Users/Dave/Desktop/mizu/gcapi.py
Traceback (most recent call last):
File "C:/Users/Dave/Desktop/mizu/gcapi.py", line 75, in <module>
if args.path.startswith('gs://'):
AttributeError: 'NoneType' object has no attribute 'startswith'
Process finished with exit code1**
import argparse
import io
# [START speech_transcribe_async]
def transcribe_file(speech_file):
"""Transcribe the given audio file asynchronously."""
from google.cloud import speech
from google.cloud.speech import enums
from google.cloud.speech import types
client = speech.SpeechClient()
# [START speech_python_migration_async_request]
with io.open(speech_file, 'rb') as audio_file:
content = audio_file.read()
audio = types.RecognitionAudio(content=content)
config = types.RecognitionConfig(
encoding=enums.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code='en-US')
# [START speech_python_migration_async_response]
operation = client.long_running_recognize(config, audio)
# [END speech_python_migration_async_request]
print('Waiting for operation to complete...')
response = operation.result(timeout=90)
# Each result is for a consecutive portion of the audio. Iterate through
# them to get the transcripts for the entire audio file.
for result in response.results:
# The first alternative is the most likely one for this portion.
print(u'Transcript: {}'.format(result.alternatives[0].transcript))
print('Confidence: {}'.format(result.alternatives[0].confidence))
# [END speech_python_migration_async_response]
# [END speech_transcribe_async]
# [START speech_transcribe_async_gcs]
def transcribe_gcs(gcs_uri):
"""Asynchronously transcribes the audio file specified by the gcs_uri."""
from google.cloud import speech
from google.cloud.speech import enums
from google.cloud.speech import types
client = speech.SpeechClient()
audio = types.RecognitionAudio(uri=gcs_uri)
config = types.RecognitionConfig(
encoding=enums.RecognitionConfig.AudioEncoding.FLAC,
sample_rate_hertz=16000,
language_code='en-US')
operation = client.long_running_recognize(config, audio)
print('Waiting for operation to complete...')
response = operation.result(timeout=90)
# Each result is for a consecutive portion of the audio. Iterate through
# them to get the transcripts for the entire audio file.
for result in response.results:
# The first alternative is the most likely one for this portion.
print(u'Transcript: {}'.format(result.alternatives[0].transcript))
print('Confidence: {}'.format(result.alternatives[0].confidence))
# [END speech_transcribe_async_gcs]
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument(
'--path', help='C:/Users/Dave/Desktop/mizu/output.wav')
args = parser.parse_args()
if args.path.startswith('gs://'):
transcribe_gcs(args.path)
else:
transcribe_file(args.path)
I expect it to output a file with text from the audio file being transcribed, billing my account in the process.
https://docs.python.org/3/library/argparse.html
With parser.add_argument('--path', help='C:/Users/Dave/Desktop/mizu/output.wav')
you just defined that your script may accept argument --path
after it's invoked from command line, and that text is just a help text shown if someone starts your script with --help
argument.
So, if that script where if __name__ == '__main__'
is located has the name myscript.py, you actually have to start your script like:
python myscript.py --path C:/Users/Dave/Desktop/mizu/output.wav
But, that routine makes no sense in this case, a solution for you is to get rid of that extra code. Do just:
if __name__ == '__main__':
transcribe_file('C:/Users/Dave/Desktop/mizu/output.wav')