I'm formalizing this article in Isabelle. In section 4.1 it describes the following setting:
context
fixes c d :: real
assumes "c ≠ 0" "∃ b. c = b^2" "∃ b'. d = b'^2"
begin
definition t where "t = sqrt(d/c)"
definition e' where "e' x y = x^2 + y^2 - 1 - t^2 * x^2 * y^2"
definition ρ where "ρ x y = (-y,x)"
definition τ where "τ x y = (1/(t*x),1/(t*y))"
It then defines G to be the abelian group of order eight generated by ρ and τ.
Is there an easy way of:
I did make an attempt to solve the problem and came up with a slightly forceful method for its solution:
context
fixes c d :: real
assumes "c ≠ 0" "∃b. c = b^2" "∃b'. d = b'^2"
begin
definition t where "t = sqrt(d/c)"
definition e' where "e' x y = x^2 + y^2 - 1 - t^2 * x^2 * y^2"
context
assumes nz_t: "t ≠ 0"
begin
definition ρ :: "real × real ⇒ real × real" where
"ρ z = (-snd z, fst z)"
definition τ :: "real × real ⇒ real × real" where
"τ z = (1/(t*fst z), 1/(t*snd z))"
definition S where
"S ≡
{
id,
(λz. (-snd z, fst z)),
(λz. (-fst z, -snd z)),
(λz. (snd z, -fst z)),
(λz. (1/(t*fst z), 1/(t*snd z))),
(λz. (-1/(t*snd z), 1/(t*fst z))),
(λz. (-1/(t*fst z), -1/(t*snd z))),
(λz. (1/(t*snd z), -1/(t*fst z)))
}"
definition ρS where
"ρS ≡
{id, (λz. (-snd z, fst z)), (λz. (-fst z, -snd z)), (λz. (snd z, -fst z))}"
definition τS where
"τS ≡ {id, (λz. (1/(t*fst z), 1/(t*snd z)))}"
definition BIJ where "BIJ = ⦇carrier = {f. bij f}, mult = comp, one = id⦈"
interpretation bij: group BIJ
unfolding BIJ_def
apply unfold_locales
subgoal by (simp add: bij_comp)
subgoal by (simp add: comp_assoc)
subgoal by simp
subgoal by simp
subgoal by simp
subgoal
unfolding Units_def
by clarsimp
(metis inj_iff bij_betw_def bij_betw_inv_into inv_o_cancel surj_iff)
done
(*the proof may take quite a few seconds*)
lemma comp_S: "x ∈ S ⟹ y ∈ S ⟹ x ∘ y ∈ S"
unfolding comp_apply S_def Set.insert_iff by (elim disjE) fastforce+
lemma comm_S: "x ∈ S ⟹ y ∈ S ⟹ x ∘ y = y ∘ x"
unfolding comp_apply S_def Set.insert_iff by (elim disjE) fastforce+
lemma bij_ρ: "bij ρ"
unfolding bij_def inj_def surj_def ρ_def
by clarsimp (metis add.inverse_inverse)
lemma bij_τ: "bij τ"
unfolding bij_def inj_def surj_def τ_def
proof(simp add: nz_t, intro allI, intro exI)
fix a show "a = 1 / (t * (1/(a*t)))" using nz_t by simp
qed
lemma generate_ρτ: "generate BIJ {ρ, τ} = S"
proof(standard; intro subsetI)
have inv_τ: "inv⇘BIJ⇙ τ = τ"
unfolding m_inv_def
proof(standard)
show "τ ∈ carrier BIJ ∧ τ ⊗⇘BIJ⇙ τ = 𝟭⇘BIJ⇙ ∧ τ ⊗⇘BIJ⇙ τ = 𝟭⇘BIJ⇙"
unfolding BIJ_def apply(intro conjI)
subgoal using bij_τ by simp
subgoal unfolding τ_def using nz_t by auto
subgoal unfolding τ_def using nz_t by auto
done
then show
"y ∈ carrier BIJ ∧ τ ⊗⇘BIJ⇙ y = 𝟭⇘BIJ⇙ ∧ y ⊗⇘BIJ⇙ τ = 𝟭⇘BIJ⇙ ⟹ y = τ"
for y
unfolding BIJ_def by (auto intro: left_right_inverse_eq)
qed
define ρ' :: "real × real ⇒ real × real" where "ρ' = (λz. (snd z, -fst z))"
have bij_ρ': "bij ρ'"
unfolding bij_def inj_def surj_def ρ'_def
by simp (metis add.inverse_inverse)
have inv_ρ: "inv⇘BIJ⇙ ρ = ρ'"
unfolding m_inv_def
proof(standard)
show "ρ' ∈ carrier BIJ ∧ ρ ⊗⇘BIJ⇙ ρ' = 𝟭⇘BIJ⇙ ∧ ρ' ⊗⇘BIJ⇙ ρ = 𝟭⇘BIJ⇙"
unfolding BIJ_def apply(intro conjI)
subgoal using bij_ρ' by auto
subgoal unfolding ρ_def ρ'_def by auto
subgoal unfolding ρ_def ρ'_def by auto
done
then show
"y ∈ carrier BIJ ∧ ρ ⊗⇘BIJ⇙ y = 𝟭⇘BIJ⇙ ∧ y ⊗⇘BIJ⇙ ρ = 𝟭⇘BIJ⇙ ⟹ y = ρ'"
for y
unfolding BIJ_def by (auto intro: left_right_inverse_eq)
qed
have ττ: "τ ⊗⇘BIJ⇙ τ = 𝟭⇘BIJ⇙"
unfolding BIJ_def τ_def comp_def by (auto simp: nz_t)
show "x ∈ generate BIJ {ρ, τ} ⟹ x ∈ S" for x
apply(induction rule: generate.induct)
subgoal unfolding BIJ_def S_def by auto
subgoal unfolding BIJ_def S_def ρ_def τ_def by auto
subgoal
unfolding Set.insert_iff apply(elim disjE)
subgoal using inv_ρ unfolding BIJ_def S_def ρ_def ρ'_def by simp
subgoal using inv_τ unfolding BIJ_def S_def τ_def by simp
subgoal by simp
done
subgoal unfolding BIJ_def by (metis monoid.select_convs(1) comp_S)
done
show "x ∈ S ⟹ x ∈ generate BIJ {ρ, τ}" for x
unfolding S_def Set.insert_iff
proof(elim disjE; clarsimp)
show "id ∈ generate BIJ {ρ, τ}"
unfolding BIJ_def using generate.simps by fastforce
show ρ_gen: "(λz. (- snd z, fst z)) ∈ generate BIJ {ρ, τ}"
by (fold ρ_def, rule generate.simps[THEN iffD2]) simp
show τ_gen: "(λz. (1 / (t * fst z), 1 / (t * snd z))) ∈ generate BIJ {ρ, τ}"
by (fold τ_def) (simp add: generate.incl)
from inv_ρ show inv_ρ_gen: "(λz. (snd z, - fst z)) ∈ generate BIJ {ρ, τ}"
by (fold ρ'_def) (auto simp: generate.inv insertI1)
show ρρ_gen: "(λz. (- fst z, - snd z)) ∈ generate BIJ {ρ, τ}"
proof-
have ρρ: "(λz. (- fst z, - snd z)) = ρ ⊗⇘BIJ⇙ ρ"
unfolding ρ_def BIJ_def by auto
show ?thesis
apply(rule generate.simps[THEN iffD2])
using ρρ ρ_gen[folded ρ_def] by auto
qed
show "(λz. (- (1 / (t * snd z)), 1 / (t * fst z))) ∈ generate BIJ {ρ, τ}"
proof-
have ρτ: "(λz. (- (1 / (t * snd z)), 1 / (t * fst z))) = ρ ⊗⇘BIJ⇙ τ"
unfolding ρ_def τ_def BIJ_def by auto
show ?thesis
apply(rule generate.simps[THEN iffD2])
using ρτ ρ_gen[folded ρ_def] τ_gen[folded τ_def] by auto
qed
show
"(λz. (- (1 / (t * fst z)), - (1 / (t * snd z)))) ∈ generate BIJ {ρ, τ}"
proof-
have ρρτ:
"(λz. (- (1 / (t * fst z)), - (1 / (t * snd z)))) =
(λz. (- fst z, - snd z)) ⊗⇘BIJ⇙ τ"
unfolding τ_def BIJ_def by auto
show ?thesis
apply(rule generate.simps[THEN iffD2])
using ρρτ ρρ_gen τ_gen[folded τ_def] by auto
qed
show "(λz. (1 / (t * snd z), - (1 / (t * fst z)))) ∈ generate BIJ {ρ, τ}"
proof-
have inv_ρ_τ:
"(λz. (1 / (t * snd z), - (1 / (t * fst z)))) =
(λz. (snd z, - fst z)) ⊗⇘BIJ⇙ τ"
unfolding τ_def BIJ_def by auto
show ?thesis
apply(rule generate.simps[THEN iffD2])
using inv_ρ_τ inv_ρ_gen τ_gen[folded τ_def] by auto
qed
qed
qed
lemma "comm_group (BIJ⦇carrier := (generate BIJ {ρ, τ})⦈)"
proof-
have ρτ_ss_BIJ: "{ρ, τ} ⊆ carrier BIJ"
using bij_ρ bij_τ unfolding BIJ_def by simp
interpret ρτ_sg: subgroup "(generate BIJ {ρ, τ})" BIJ
using ρτ_ss_BIJ by (rule bij.generate_is_subgroup)
interpret ρτ_g: group "BIJ⦇carrier := (generate BIJ {ρ, τ})⦈"
by (rule ρτ_sg.subgroup_is_group[OF bij.group_axioms])
have car_S: "carrier (BIJ⦇carrier := S⦈) = S" by simp
have BIJ_comp: "x ⊗⇘BIJ⦇carrier := S⦈⇙ y = x ∘ y" for x y
unfolding BIJ_def by auto
from ρτ_g.group_comm_groupI[
unfolded generate_ρτ car_S BIJ_comp, OF comm_S, simplified
]
show ?thesis unfolding generate_ρτ by assumption
qed
lemma id_pair_def: "(λx. x) = (λz. (fst z, snd z))" by simp
lemma distinct_single: "distinct [x] = True" by simp
lemma ne_ff'_gg'_imp_ne_fgf'g':
assumes "f ≠ f' ∨ g ≠ g'"
shows
"(λz. (f (fst z) (snd z), g (fst z) (snd z))) ≠
(λz. (f' (fst z) (snd z), g' (fst z) (snd z)))"
using assms
proof(rule disjE)
assume "f ≠ f'"
then obtain x y where "f x y ≠ f' x y" by blast
then show ?thesis by (metis (hide_lams) fst_eqD snd_eqD)
next
assume "g ≠ g'"
then obtain x y where "g x y ≠ g' x y" by blast
then show ?thesis by (metis (hide_lams) fst_eqD snd_eqD)
qed
lemma id_ne_hyp: "(λa. a) ≠ (λa. 1/(t*a))"
proof(rule ccontr, simp)
assume id_eq_hyp: "(λa. a) = (λa. 1/(t*a))"
{
fix a :: real assume "a > 0"
define b where "b = sqrt(a)"
from ‹a > 0› have "a = b*b" and "b > 0" unfolding b_def by auto
from id_eq_hyp have "b = 1/(t*b)" by metis
with ‹b > 0› have "b div b =(1/(t*b)) div b" by simp
with ‹b > 0› have "1 = (1/(t*a))" unfolding ‹a = b*b› by simp
with ‹a > 0› nz_t have "t*a = 1" by simp
}
note ta_eq_one = this
define t2 where "t2 = (if t > 0 then 2/t else -2/t)"
with nz_t have "t2 > 0" unfolding t2_def by auto
from nz_t have "t*t2 = 2 ∨ t*t2 = -2" unfolding t2_def by auto
from ta_eq_one ‹t2 > 0› this show False by auto
qed
lemma id_ne_mhyp: "(λa. a) ≠ (λa. -1/(t*a))"
proof(rule ccontr, simp)
assume id_eq_hyp: "(λa. a) = (λa. -(1/(t*a)))"
{
fix a :: real assume "a > 0"
define b where "b = sqrt(a)"
from ‹a > 0› have "a = b*b" and "b > 0" unfolding b_def by auto
from id_eq_hyp have "b = -(1/(t*b))" by metis
with ‹b > 0› have "b div b =-1/(t*b) div b" by simp
with ‹b > 0› have "1 = -1/(t*a)" unfolding ‹a = b*b› by simp
with ‹a > 0› nz_t have "t*a = -1" by (metis divide_eq_1_iff)
}
note ta_eq_one = this
define t2 where "t2 = (if t > 0 then 2/t else -2/t)"
with nz_t have "t2 > 0" unfolding t2_def by auto
from nz_t have "t*t2 = 2 ∨ t*t2 = -2" unfolding t2_def by auto
from ta_eq_one ‹t2 > 0› this show False by auto
qed
lemma mid_ne_hyp: "(λa. -a) ≠ (λa. 1 / (t*a))"
using id_ne_mhyp by (metis minus_divide_left minus_equation_iff)
lemma mid_ne_mhyp: "(λa. -a) ≠ (λa. -1 / (t*a))"
using id_ne_hyp by (metis divide_minus_left minus_equation_iff)
lemma hyp_neq_hyp_1: "(λa. - 1/(t*a)) ≠ (λa. 1/(t*a))"
using nz_t
by (metis divide_cancel_right id_ne_mhyp mult_cancel_right1 mult_left_cancel
one_neq_neg_one)
lemma distinct:
"distinct
[
id,
(λz. (-snd z, fst z)),
(λz. (-fst z, -snd z)),
(λz. (snd z, -fst z)),
(λz. (1/(t*fst z), 1/(t*snd z))),
(λz. (-1/(t*snd z), 1/(t*fst z))),
(λz. (-1/(t*fst z), -1/(t*snd z))),
(λz. (1/(t*snd z), -1/(t*fst z)))
]"
apply(unfold distinct_length_2_or_more)+
unfolding
distinct_length_2_or_more
distinct_single
id_def id_pair_def
HOL.simp_thms(21)
by
(intro conjI)
(
rule ne_ff'_gg'_imp_ne_fgf'g',
metis one_neq_neg_one id_ne_hyp id_ne_mhyp
mid_ne_hyp mid_ne_mhyp hyp_neq_hyp_1
)+
lemma "card S = 8"
using distinct unfolding S_def using card_empty card_insert_disjoint by auto
end
end
Remarks
sledgehammer
for many parts of the proofs and there is some unnecessary code duplication. Therefore, just like most of my answers on SO, this answer is far from perfect from the perspective of the coding style.ρ
and τ
and then using |HK|=|H||K|/|H∩K|
to determine the order of G
) would require proving quite a number of additional theorems for HOL-Algebra
, but I did not check with the AFP before making this remark and I do not use HOL-Algebra
on a regular basis. Therefore, I may have missed something.