I am currently working on a project and I am trying to measure duty cycle and frequency of a two different signals connected to Timer1 (channel 1 and channel 2) PE9 ------> TIM1_CH1 PE11 ------> TIM1_CH2
My plan is to switch between CH1 and CH2 at every 100ms, calling a function named PwmInput_SwitchChannels(BOOL) which contains the right configurations for every channel. In the interrupt function I want to capture the values and to store them in an array of two element of pwm_capture type.
typedef struct
{
__IO UInt16 uhIC2Value;
__IO UInt16 uhDutyCycle;
__IO UInt32 uwFrequency;
}
pwm_capture;
pwm_capture input_capture[2];
The problem is that the captured values for 1 channel do not match the real ones and it seems to be a problem in the PwmInput_SwitchChannels. When I independently tested both channels the code worked very well and the interrupt function was doing its job.
#define PIN18_PWM_A ((BOOL) 0)
#define PIN19_PWM_B ((BOOL) 1)
typedef struct
{
__IO UInt16 uhIC2Value;
__IO UInt16 uhDutyCycle;
__IO UInt32 uwFrequency;
}
pwm_capture;
pwm_capture input_capture[2];
BOOL Tim1_Channels = 0;
UInt16 counter_pwm = 0;
void HalTim_MainFunction(void)
{
if ( FALSE != rb_InitStatus )
{
counter_pwm++;
if(counter_pwm % 100 == 0)
{
Tim1_Channels = ! Tim1_Channels;
PwmInput_SwitchChannels(Tim1_Channels);
}
}
else {
;
}
}
void HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)
{
if(htim->Instance == TIM1)
{
switch(Tim1_Channels){
case PIN18_PWM_A:
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_2)
{
/* Get the Input Capture value */
input_capture[0].uhIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2);
if (input_capture[0].uhIC2Value != 0)
{
/* Duty cycle computation */
input_capture[0].uhDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1)) * 100) / input_capture[0].uhIC2Value;
/* uwFrequency computation
TIM1 counter clock = (RCC_Clocks.HCLK_Frequency)/2 */
input_capture[0].uwFrequency = (HAL_RCC_GetHCLKFreq()) / input_capture[0].uhIC2Value;
}
else
{
input_capture[0].uhDutyCycle = 0;
input_capture[0].uwFrequency = 0;
}
}
break;
}
case PIN19_PWM_B:
{
if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)
{
/* Get the Input Capture value */
input_capture[1].uhIC2Value = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);
if (input_capture[1].uhIC2Value != 0)
{
/* Duty cycle computation */
input_capture[1].uhDutyCycle = ((HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_2)) * 100) / input_capture[1].uhIC2Value;
/* uwFrequency computation
TIM1 counter clock = (RCC_Clocks.HCLK_Frequency)/2 */
input_capture[1].uwFrequency = (HAL_RCC_GetHCLKFreq()) / input_capture[1].uhIC2Value;
}
else
{
input_capture[1].uhDutyCycle = 0;
input_capture[1].uwFrequency = 0;
}
}
break;
}
default:
Error_Handler();
}
}
}
void PwmInput_SwitchChannels(BOOL aux)
{
TIM_SlaveConfigTypeDef sSlaveConfig_aux = {0};
TIM_MasterConfigTypeDef sMasterConfig_aux = {0};
TIM_IC_InitTypeDef sConfigIC_aux = {0};
/*##-4- Stop the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Stop the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Stop_IT(&htim1, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
switch (aux){
case PIN18_PWM_A:
{
sSlaveConfig_aux.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig_aux.InputTrigger = TIM_TS_TI2FP2;
sSlaveConfig_aux.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sSlaveConfig_aux.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&htim1, &sSlaveConfig_aux) != HAL_OK)
{
Error_Handler();
}
sMasterConfig_aux.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig_aux.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig_aux) != HAL_OK)
{
Error_Handler();
}
sConfigIC_aux.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC_aux.ICSelection = TIM_ICSELECTION_INDIRECTTI;
sConfigIC_aux.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC_aux.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC_aux, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
sConfigIC_aux.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC_aux.ICSelection = TIM_ICSELECTION_DIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC_aux, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
break;
}
case PIN19_PWM_B:
{
sSlaveConfig_aux.SlaveMode = TIM_SLAVEMODE_RESET;
sSlaveConfig_aux.InputTrigger = TIM_TS_TI1FP1;
sSlaveConfig_aux.TriggerPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sSlaveConfig_aux.TriggerFilter = 0;
if (HAL_TIM_SlaveConfigSynchronization(&htim1, &sSlaveConfig_aux) != HAL_OK)
{
Error_Handler();
}
sMasterConfig_aux.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig_aux.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig_aux) != HAL_OK)
{
Error_Handler();
}
sConfigIC_aux.ICPolarity = TIM_INPUTCHANNELPOLARITY_FALLING;
sConfigIC_aux.ICSelection = TIM_ICSELECTION_INDIRECTTI;
sConfigIC_aux.ICPrescaler = TIM_ICPSC_DIV1;
sConfigIC_aux.ICFilter = 0;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC_aux, TIM_CHANNEL_2) != HAL_OK)
{
Error_Handler();
}
sConfigIC_aux.ICPolarity = TIM_INPUTCHANNELPOLARITY_RISING;
sConfigIC_aux.ICSelection = TIM_ICSELECTION_DIRECTTI;
if (HAL_TIM_IC_ConfigChannel(&htim1, &sConfigIC_aux, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
break;
}
default:
Error_Handler();
/*##-4- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_2) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
/*##-5- Start the Input Capture in interrupt mode ##########################*/
if (HAL_TIM_IC_Start_IT(&htim1, TIM_CHANNEL_1) != HAL_OK)
{
/* Starting Error */
Error_Handler();
}
}
}
My intention is to switch correctly between the two channels (only using Tim1_CH1 and Tim1_CH2, due to the hardware limitations) without affect the results and the performance.
One possible cause is that Tim1_Channels
is not declared volatile
. It is written to in the main function, and accessed in the interrupt handler. Lacking the volatile
qualifier, nothing prevents the optimizer to hold the value in a register, and never write it back to memory. As far as the optimizer knows, the interrupt handler where the value is accessesd, is never called from the main program.