Create column E that fills column C. If D is <10, then it fill C of earlier row and current row.
This is my Input DataSet:
I,A,B,C,D
1,P,100+,L,15
2,P,100+,M,9
3,P,100+,N,15
4,P,100+,O,15
5,Q,100+,L,2
6,Q,100+,M,15
7,Q,100+,N,3
8,Q,100+,O,15
I tried using some for loops. However, i think we can use shift or append functions to complete this. However, i am getting value errors using the shift function.
Desired Output:
I,A,B,C,D,E
1,P,100+,L,15,L
2,P,100+,M,9,M+N
3,P,100+,N,15,M+N
4,P,100+,O,15,O
5,Q,100+,L,2,L+O
6,Q,100+,M,15,M+N
7,Q,100+,N,3,M+N
8,Q,100+,O,15,L+O
I am working out the column E given in desired output table above.
using np.where
and pd.shift
##will populate C values index+1 where the condition is True
df['E'] = np.where( df['D'] < 10,df.loc[df.index + 1,'C'] , df['C'])
##Appending the values of C and E
df['E'] = df.apply(lambda x: x.C + '+' + x.E if x.C != x.E else x.C, axis=1)
df['F'] = df['E'].shift(1)
##Copying the values at index+1 position where the condition is True
df['E'] = df.apply(lambda x: x.F if '+' in str(x.F) else x.E, axis=1)
df.drop('F', axis=1, inplace=True)
Output
I A B C D E
0 1 P 100+ L 15 L
1 2 P 100+ M 9 M+N
2 3 P 100+ N 15 M+N
3 4 P 100+ O 15 O
4 5 Q 100+ L 2 L+M
5 6 Q 100+ M 15 L+M
6 7 Q 100+ N 3 N+O
7 8 Q 100+ O 15 N+O