I have the following Dataframe:
+------+----------+-------------+--------------------+---------+-----+----------+
|ID |MEM_ID | BFS | SVC_DT |TYP |SEQ |BFS_SEQ |
+------+----------+----------------------------------+---------+-----+----------+
|105771|29378668 | BRIMONIDINE | 2019-02-04 00:00:00|PD |1 |1 |
|105772|29378668 | BRIMONIDINE | 2019-04-04 00:00:00|PD |2 |2 |
|105773|29378668 | BRIMONIDINE | 2019-04-17 00:00:00|RV |3 |3 |
|105774|29378668 | TIMOLOL | 2019-04-17 00:00:00|RV |4 |1 |
|105775|29378668 | BRIMONIDINE | 2019-04-22 00:00:00|PD |5 |4 |
|105776|29378668 | TIMOLOL | 2019-04-22 00:00:00|PD |6 |2 |
+------+----------+----------------------------------+---------+-----+----------+
For every row, I have to find the occurrence of next 'PD' Typ at BFS level from the current row and populate its associated ID as a new column named 'NEXT_PD_TYP_ID'
The output I am expecting is:
+------+---------+-------------+--------------------+----+-----+---------+---------------+
|ID |MEM_ID | BFS | SVC_DT |TYP |SEQ |BFS_SEQ |NEXT_PD_TYP_ID |
+------+---------+----------------------------------+----+-----+---------+---------------+
|105771|29378668 | BRIMONIDINE | 2019-02-04 00:00:00|PD |1 |1 |105772 |
|105772|29378668 | BRIMONIDINE | 2019-04-04 00:00:00|PD |2 |2 |105775 |
|105773|29378668 | BRIMONIDINE | 2019-04-17 00:00:00|RV |3 |3 |105775 |
|105774|29378668 | TIMOLOL | 2019-04-17 00:00:00|RV |4 |1 |105776 |
|105775|29378668 | BRIMONIDINE | 2019-04-22 00:00:00|PD |5 |4 |null |
|105776|29378668 | TIMOLOL | 2019-04-22 00:00:00|PD |6 |2 |null |
+------+---------+----------------------------------+----+-----+---------+---------------+
Need help.
I have tried using the conditional aggregation: max(when), however since it has more than one 'PD' the max is returning only one value for all the rows.
No error messages
I hope this helps.
I created a new column with ID's of TYP === PD. I called it TYPPDID.
Then I used Window frame ranging from next row to unbounded following row and got the first not-null TYPPDID
orderBy("ID")
in the end is only to show records in order.
import org.apache.spark.sql.functions._
val df = Seq(
("105771", "BRIMONIDINE", "PD"),
("105772", "BRIMONIDINE", "PD"),
("105773", "BRIMONIDINE","RV"),
("105774", "TIMOLOL", "RV"),
("105775", "BRIMONIDINE", "PD"),
("105776", "TIMOLOL", "PD")
).toDF("ID", "BFS", "TYP").withColumn("TYPPDID", when($"TYP" === "PD", $"ID"))
df: org.apache.spark.sql.DataFrame = [ID: string, BFS: string ... 2 more fields]
scala> df.show
+------+-----------+---+-------+
| ID| BFS|TYP|TYPPDID|
+------+-----------+---+-------+
|105771|BRIMONIDINE| PD| 105771|
|105772|BRIMONIDINE| PD| 105772|
|105773|BRIMONIDINE| RV| null|
|105774| TIMOLOL| RV| null|
|105775|BRIMONIDINE| PD| 105775|
|105776| TIMOLOL| PD| 105776|
+------+-----------+---+-------+
scala> val overColumns = Window.partitionBy("BFS").orderBy("ID").rowsBetween(1, Window.unboundedFollowing)
overColumns: org.apache.spark.sql.expressions.WindowSpec = org.apache.spark.sql.expressions.WindowSpec@eb923ef
scala> df.withColumn("NEXT_PD_TYP_ID",first("TYPPDID", true).over(overColumns)).orderBy("ID").show(false)
+------+-----------+---+-------+-------+
|ID |BFS |TYP|TYPPDID|NEXT_PD_TYP_ID|
+------+-----------+---+-------+-------+
|105771|BRIMONIDINE|PD |105771 |105772 |
|105772|BRIMONIDINE|PD |105772 |105775 |
|105773|BRIMONIDINE|RV |null |105775 |
|105774|TIMOLOL |RV |null |105776 |
|105775|BRIMONIDINE|PD |105775 |null |
|105776|TIMOLOL |PD |105776 |null |
+------+-----------+---+-------+-------+