I have a df as follows:
Store Spend_1 Spend_2 Spend_3 Spend_4 Variance_1 Variance_2 Variance_3 Variance_4
0 1 200 230 189 200 -14 16 -6 18
1 2 224 104 240 203 -17 -11 17 -18
2 3 220 168 131 210 10 -9 12 19
3 4 143 187 139 188 -1 -17 -20 -9
4 5 179 121 162 131 6 -25 5 20
5 6 208 158 140 191 16 -14 -22 -6
I'm attempting to apply a custom sort on the column names to order it as so :
Store Spend_1 Variance_1 Spend_2 Variance_2 Spend_3 Variance_3 Spend_4 Variance_4
0 1 200 -14 230 16 189 -6 200 18
1 2 224 -17 104 -11 240 17 203 -18
2 3 220 10 168 -9 131 12 210 19
3 4 143 -1 187 -17 139 -20 188 -9
4 5 179 6 121 -25 162 5 131 20
5 6 208 16 158 -14 140 -22 191 -6
I've tried the simple sorted
but obviously this applies alphabetically, ignoring the integer at the end.
I've toyed around with enumerating
as number
, cols
the df.columns
changing the strings to ints, applying a sort then using the numbers in the iloc
but I'm not sure how apply a custom sort that way.
Idea is use key
parameetr by 2 values - values after _
converted to inetegr
s with first values before _
, but solution is apply for all columns without first with df.columns[1:]
, so last is added first column by df.columns[:1].tolist()
:
cols = df.columns[:1].tolist() +sorted(df.columns[1:],
key=lambda x: (int(x.split('_')[1]), x.split('_')[0]))
df = df[cols]
print (df)
Store Spend_1 Variance_1 Spend_2 Variance_2 Spend_3 Variance_3 \
0 1 200 -14 230 16 189 -6
1 2 224 -17 104 -11 240 17
2 3 220 10 168 -9 131 12
3 4 143 -1 187 -17 139 -20
4 5 179 6 121 -25 162 5
5 6 208 16 158 -14 140 -22
Spend_4 Variance_4
0 200 18
1 203 -18
2 210 19
3 188 -9
4 131 20
5 191 -6