Using mtcars
data, I am testing map()
to build some lm()
models:
library(tidyverse)
mtcars %>%
group_by(cyl) %>%
nest()%>%
mutate(fit = map(.x=data,~lm(mpg ~ ., data = .x)))
#> # A tibble: 3 x 3
#> cyl data fit
#> <dbl> <list> <list>
#> 1 6 <tibble [7 x 10]> <S3: lm>
#> 2 4 <tibble [11 x 10]> <S3: lm>
#> 3 8 <tibble [14 x 10]> <S3: lm>
The output shows that I have a new column, fit
.
Now I wish to see the summary
of each lm
When I try:
library(tidyverse)
mtcars %>%
group_by(cyl) %>%
nest()%>%
mutate(fit = map(.x=data,~lm(mpg ~ ., data = .x))) %>%
map(fit,summary)
#> Error in as_mapper(.f, ...): object 'fit' not found
It gives the error:
Error in as_mapper(.f, ...) : object 'fit' not found
If I wish to calculate R2
or aic
then I can using the following code without any problem:
library(tidyverse)
library(modelr)
mtcars %>%
group_by(cyl) %>%
nest()%>%
mutate(fit = map(.x=data,~lm(mpg ~ ., data = .x))) %>%
mutate(r2 = map_dbl(fit, ~rsquare(., data = mtcars)),
aic = map_dbl(fit, ~AIC(.))) %>%
arrange(aic)
#> # A tibble: 3 x 5
#> cyl data fit r2 aic
#> <dbl> <list> <list> <dbl> <dbl>
#> 1 6 <tibble [7 x 10]> <S3: lm> -8.96 -Inf
#> 2 4 <tibble [11 x 10]> <S3: lm> -26.4 56.4
#> 3 8 <tibble [14 x 10]> <S3: lm> -1.000 67.3
Created on 2019-06-18 by the reprex package (v0.3.0)
What am I missing?
As IceCreamToucan's comment laid out, purrr::map
does not look into the data which has been made within your piping.
If you use it with dplyr::mutate
then it has access to fit
which you have created in the previous piping.
Another option would be explicitly referring to fit
which you can see below, as my second suggestion.
library(tidyverse)
mtcars %>%
group_by(cyl) %>%
nest()%>%
mutate(fit = map(.x=data,~lm(mpg ~ ., data = .x))) %>%
mutate(fit_sum = map(fit,summary))
#> # A tibble: 3 x 4
#> cyl data fit fit_sum
#> <dbl> <list> <list> <list>
#> 1 6 <tibble [7 x 10]> <lm> <smmry.lm>
#> 2 4 <tibble [11 x 10]> <lm> <smmry.lm>
#> 3 8 <tibble [14 x 10]> <lm> <smmry.lm>
mtcars %>%
group_by(cyl) %>%
nest()%>%
mutate(fit = map(.x=data,~lm(mpg ~ ., data = .x))) %>%
{map(.$fit, summary)} #or using pull: `pull(fit) %>% map(summary)`
#> [[1]]
#>
#> Call:
#> lm(formula = mpg ~ ., data = .x)
#>
#> Residuals:
#> ALL 7 residuals are 0: no residual degrees of freedom!
#>
#> Coefficients: (3 not defined because of singularities)
#> Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 32.78649 NA NA NA
#> disp 0.07456 NA NA NA
#> hp -0.04252 NA NA NA
#> drat 1.52367 NA NA NA
#> wt 5.12418 NA NA NA
#> qsec -2.33333 NA NA NA
#> vs -1.75289 NA NA NA
#> am NA NA NA NA
#> gear NA NA NA NA
#> carb NA NA NA NA
#>
#> Residual standard error: NaN on 0 degrees of freedom
#> Multiple R-squared: 1, Adjusted R-squared: NaN
#> F-statistic: NaN on 6 and 0 DF, p-value: NA
####truncated the results for the sake of space####
Created on 2019-06-17 by the reprex package (v0.3.0)