I've a dataframe with the following data:
Now I am trying to use the isIn method in order to produce a new column with the result if the col_a is in col_b.So in this case I am trying to produce the following output:
For this I am using this code:
df['res'] = df.col_a.isin(df.col_b)
But it's always return FALSE. I also try this: df['res'] = df.col_b.isin(df.col_a)
but with the same result... all the rows as FALSE.
What I am doing wrong?
Thanks!
You can check if value in col_a
is in col_b
per rows by apply
:
df['res'] = df.apply(lambda x: x.col_a in x.col_b, axis=1)
Or by list comprehension:
df['res'] = [a in b for a, b in zip(df.col_a, df.col_b)]
EDIT: Error obviously mean there are missing values, so if-else
statement is necessary:
df = pd.DataFrame({'col_a':['SQL','Java','C#', np.nan, 'Python', np.nan],
'col_b':['I.like_SQL_since_i_used_to_ETL',
'I like_programming_SQL.too',
'I prefer Java',
'I like beer',
np.nan,
np.nan]})
print (df)
df['res'] = df.apply(lambda x: x.col_a in x.col_b
if (x.col_a == x.col_a) and (x.col_b == x.col_b)
else False, axis=1)
df['res1'] = [a in b if (a == a) and (b == b) else False for a, b in zip(df.col_a, df.col_b)]
print (df)
col_a col_b res res1
0 SQL I.like_SQL_since_i_used_to_ETL True True
1 Java I like_programming_SQL.too False False
2 C# I prefer Java False False
3 NaN I like beer False False
4 Python NaN False False
5 NaN NaN False False