Search code examples
rlistdataframedatatable

Add the numeric part of names for list of dataframes as a column


I have a list of data. In this list, it is either datatable or dataframe. After this problem, I'll bind the list.

Data example:

players
$`0001playeraway`
      key NO        MIN 2PTM 2PTA 2PT(%) 3PTM 3PTA 3PT(%) FGM FGA FG(%) FTM FTA FT(%) OR DR REB AST TO STL BS PF
   1:   * 17   40:00:00    9   15     60    0    0      0   9  15    60   2   4    50  1  8   9   2  4   1  2  1
   2:   * 16   40:00:00    4    8     50    8   13     62  12  21    57  20  22    91  2  3   5   4  4   0  0  3
   3:   * 10   33:02:00    2    4     50    0    3      0   2   7    29   0   0     0  0  4   4   1  3   1  0  4
   4:   *  3   27:46:00    2    3     67    0    0      0   2   3    67   6   6   100  1  4   5   0  1   4  0  3
   5:      1   26:24:00    1    1    100    0    2      0   1   3    33   1   2    50  1  0   1   1  0   1  0  4

$`0102playeraway`
      key NO        MIN 2PTM 2PTA 2PT(%) 3PTM 3PTA 3PT(%) FGM FGA FG(%) FTM FTA FT(%) OR DR REB AST TO STL BS PF
   1:   *  9   40:00:00    1    3     33    2    7     29   3  10    30   3   4    75  1  4   5   8  1   4  1  3
   2:   * 53   38:18:00    6   14     43    0    0      0   6  14    43   6   8    75  5  3   8   3  4   0  2  5
   3:   * 13   35:16:00    3    8     38    1    2     50   4  10    40   2   5    40  1  3   4   5  0   0  0  5
   4:   * 23   31:42:00    2    7     29    2    8     25   4  15    27   7   7   100  1  7   8   1  1   0  0  2
   5:     14      22:08    2    3     67    2    4     50   4   7    57   0   0     0  0  2   2   2  1   0  0  1

The rest is omitted.

How I can assign a value to the data table name in the list?

Desired Output:

players
$`0001playeraway`
      year key NO        MIN 2PTM 2PTA 2PT(%) 3PTM 3PTA 3PT(%) FGM FGA FG(%) FTM FTA FT(%) OR DR REB AST TO STL BS PF
   1: 0001  * 17   40:00:00    9   15     60    0    0      0   9  15    60   2   4    50  1  8   9   2  4   1  2  1
   2: 0001  * 16   40:00:00    4    8     50    8   13     62  12  21    57  20  22    91  2  3   5   4  4   0  0  3
   3: 0001  * 10   33:02:00    2    4     50    0    3      0   2   7    29   0   0     0  0  4   4   1  3   1  0  4
   4: 0001  *  3   27:46:00    2    3     67    0    0      0   2   3    67   6   6   100  1  4   5   0  1   4  0  3
   5: 0001     1   26:24:00    1    1    100    0    2      0   1   3    33   1   2    50  1  0   1   1  0   1  0  4

$`0102playeraway`
      year key NO        MIN 2PTM 2PTA 2PT(%) 3PTM 3PTA 3PT(%) FGM FGA FG(%) FTM FTA FT(%) OR DR REB AST TO STL BS PF
   1: 0102  *  9   40:00:00    1    3     33    2    7     29   3  10    30   3   4    75  1  4   5   8  1   4  1  3
   2: 0102  * 53   38:18:00    6   14     43    0    0      0   6  14    43   6   8    75  5  3   8   3  4   0  2  5
   3: 0102  * 13   35:16:00    3    8     38    1    2     50   4  10    40   2   5    40  1  3   4   5  0   0  0  5
   4: 0102  * 23   31:42:00    2    7     29    2    8     25   4  15    27   7   7   100  1  7   8   1  1   0  0  2
   5: 0102    14      22:08    2    3     67    2    4     50   4   7    57   0   0     0  0  2   2   2  1   0  0  1

Solution

  • You could do this in a simple Map with substr; no need for additional packages.

    L shall serve as an example of a mixed list of data.frames and data.tables:

    L
    # $`0001playeraway`
    # X1 X2 X3 X4
    # 1  1  4  7 10
    # 2  2  5  8 11
    # 3  3  6  9 12
    # 
    # $`0102playeraway`
    # X1 X2 X3 X4
    # 1  1  4  7 10
    # 2  2  5  8 11
    # 3  3  6  9 12
    # 
    # $`1003playeraway`
    # X1 X2 X3 X4
    # 1:  1  4  7 10
    # 2:  2  5  8 11
    # 3:  3  6  9 12
    

    Method:

    library(data.table)
    dat <- do.call(rbind, Map(function(x) cbind(year=substr(names(L)[x], 1, 4), L[[x]]), seq(L)))
    dat
    #    year X1 X2 X3 X4
    # 1: 0001  1  4  7 10
    # 2: 0001  2  5  8 11
    # 3: 0001  3  6  9 12
    # 4: 0102  1  4  7 10
    # 5: 0102  2  5  8 11
    # 6: 0102  3  6  9 12
    # 7: 1003  1  4  7 10
    # 8: 1003  2  5  8 11
    # 9: 1003  3  6  9 12
    

    Since data.table dominates the process, do dat <- as.data.frame(dat) if you want a data.frame after.

    Data

    L <- list(`0001playeraway` = structure(list(X1 = 1:3, X2 = 4:6, X3 = 7:9, 
        X4 = 10:12), class = "data.frame", row.names = c(NA, -3L)), 
        `0102playeraway` = structure(list(X1 = 1:3, X2 = 4:6, X3 = 7:9, 
            X4 = 10:12), class = "data.frame", row.names = c(NA, 
        -3L)), `1003playeraway` = structure(list(X1 = 1:3, X2 = 4:6, 
            X3 = 7:9, X4 = 10:12), class = c("data.table", "data.frame"
        ), row.names = c(NA, -3L)))