I wanted to see if I can simply set new weights for gensim's Word2Vec without training. I get the 20 News Group data set from scikit-learn (from sklearn.datasets import fetch_20newsgroups) and trained an instance of Word2Vec on it:
model_w2v = models.Word2Vec(sg = 1, size=300)
model_w2v.build_vocab(all_tokens)
model_w2v.train(all_tokens, total_examples=model_w2v.corpus_count, epochs = 30)
Here all_tokens is the tokenized data set. Then I created a new instance of Word2Vec without training
model_w2v_new = models.Word2Vec(sg = 1, size=300)
model_w2v_new.build_vocab(all_tokens)
and set the embeddings of the new Word2Vec equal to the first one
model_w2v_new.wv.vectors = model_w2v.wv.vectors
Most of the functions work as expected, e.g.
model_w2v.wv.similarity( w1='religion', w2 = 'religions')
> 0.4796233
model_w2v_new.wv.similarity( w1='religion', w2 = 'religions')
> 0.4796233
and
model_w2v.wv.words_closer_than(w1='religion', w2 = 'judaism')
> ['religions']
model_w2v_new.wv.words_closer_than(w1='religion', w2 = 'judaism')
> ['religions']
and
entities_list = list(model_w2v.wv.vocab.keys()).remove('religion')
model_w2v.wv.most_similar_to_given(entity1='religion',entities_list = entities_list)
> 'religions'
model_w2v_new.wv.most_similar_to_given(entity1='religion',entities_list = entities_list)
> 'religions'
However, most_similar doesn't work:
model_w2v.wv.most_similar(positive=['religion'], topn=3)
[('religions', 0.4796232581138611),
('judaism', 0.4426296651363373),
('theists', 0.43141329288482666)]
model_w2v_new.wv.most_similar(positive=['religion'], topn=3)
>[('roderick', 0.22643062472343445),
> ('nci', 0.21744996309280396),
> ('soviet', 0.20012077689170837)]
What am I missing?
Disclaimer. I posted this question on datascience.stackexchange but got no response, hoping to have a better luck here.
Generally, your approach should work.
It's likely the specific problem you're encountering was caused by an extra probing step you took and is not shown in your code, because you had no reason to think it significant: some sort of most_similar()
-like operation on model_w2v_new
after its build_vocab()
call but before the later, malfunctioning operations.
Traditionally, most_similar()
calculations operate on a version of the vectors that has been normalized to unit-length. The 1st time these unit-normed vectors are needed, they're calculated – and then cached inside the model. So, if you then replace the raw vectors with other values, but don't discard those cached values, you'll see results like you're reporting – essentially random, reflecting the randomly-initialized-but-never-trained starting vector values.
If this is what happened, just discarding the cached values should cause the next most_similar()
to refresh them properly, and then you should get the results you expect:
model_w2v_new.wv.vectors_norm = None