I have a polygon which is oriented counter clock wise. I am trying to figure out what the bisectors are for each adjacent edge. I have come up with a solution, but I am wondering if this is the most efficient way ...
I need to check the interior angle. Is it bigger or smaller then pi. I need to do this, because I need to flip either the incoming vector, or the outgoing vector.
The question basically is: is there a more efficient way to determine if the interior angle > pi (or 180deg)?
The procedure in javascript I have now is this:
export const getBisectors = (polygon) => {
//get bisectors, including length based on the unit normal vectors of the edges (inward)
let bisectors = [];
let prevPoint = polygon[polygon.length - 1];
polygon.forEach((p, i) => {
let nextPoint = i === polygon.length - 1 ? polygon[0] : polygon[i + 1];
//vector going to p
let v1 = normalizeVector({ x: p.x - prevPoint.x, y : p.y - prevPoint.y });
let radIn = Math.acos(v1.x);
if (v1.y < 0) radIn = TwoPI - radIn;
// vector to next point
let v2 = normalizeVector({ x: nextPoint.x - p.x, y : nextPoint.y - p.y });
let radOut = Math.acos(v2.x);
if (v2.y < 0) radOut = TwoPI - radOut;
let rotation = radIn - radOut;
if (rotation < 0) rotation += TwoPI;
if (rotation > Math.PI) {
//invert outgoing
v2 = multiply(v2, -1);
} else {
//invert incoming
v1 = multiply(v1, -1);
}
let bisector = addVectors(v1, v2);
bisectors.push({bisector: bisector, p : p });
prevPoint = p;
});
return bisectors;
}
After the partial answer I ended up with the following method:
export const getIntersection = (p1, v1, p2, v2) => {
//find s
//p1 + s * v1 == p2 + t * v2
var denominator = cross(v1, v2);
if (Math.abs(denominator) < epsilon) {
return p1;
}
var s = (p2.x * v2.y + p1.y * v2.x - p2.y * v2.x - p1.x * v2.y) / denominator;
return {x : p1.x + s * v1.x, y : p1.y + s * v1.y};
}
function getBisector(prevPoint, point, nextPoint) {
let v1 = { x: point.x - prevPoint.x, y : point.y - prevPoint.y };
let n1 = normalizeVector( { x: v1.y, y : -( v1.x ) } )
let n2 = normalizeVector( { x: (nextPoint.y - point.y), y : -(nextPoint.x - point.x) } )
let bisector = addVectors(n1, n2);
let i = getIntersection(point, bisector, addVectors(prevPoint, n1), v1);
return {x : i.x - point.x, y : i.y - point.y};
}
let v1 = normalizeVector({ x: p.x - prevPoint.x, y : p.y - prevPoint.y });
let v2 = normalizeVector({ x: nextPoint.x - p.x, y : nextPoint.y - p.y });
k = v1.x * v2.y - v1.y * v2.x;
if (k < 0){
//the angle is greater than pi, invert outgoing,
//ready to get interior bisector
v2 = multiply(v2, -1);
}
else{
//the angle is less than pi, invert incoming,
v1 = multiply(v1, -1);
}
bisector = normalizeVector({ x: v1.x + v2.x, y : v1.y + v2.y });
Etit: Here is even faster code for generating interior bisector, without the use of any normals: Matlab code, which I tested. It generates the unit bisectors pointing in the interior of the polygon.
function B = bisectors(P)
%P is 2 x n matrix, column P(:,j) is a vertex of a polygon in the plane,
%P is the ordered set of vertices of the polygon
[~,n] = size(P);
B = zeros(2,n);
for j=1:n
if j == 1
v_in = P(:,1) - P(:,n);
v_out = P(:,2) - P(:,1);
elseif j == n
v_in = P(:,j) - P(:,j-1);
v_out = P(:,1) - P(:,j);
else
v_in = P(:,j) - P(:,j-1);
v_out = P(:,j+1) - P(:,j);
end
v_in = v_in/sqrt(v_in'*v_in); %normalize edge-vector
v_out = v_out/sqrt(v_out'*v_out); %normalize edge-vector
% bisector of the complementary angle at the vertex j,
% pointing counter clockwise and displacing the vertex so that
% the resulting polygon is 1 unit inwards in normal direction:
bisector = v_in + v_out;
bisector = bisector/abs(bisector'*v_in);
% 90 degree counter clockwise rotation of complementary bisector:
B(1,j) = - bisector(2);
B(2,j) = bisector(1);
end
end
And in your notation:
function getBisector(prevPoint, point, nextPoint) {
let v1 = normalizeVector({ x : point.x - prevPoint.x, y : point.y - prevPoint.y });
let v2 = normalizeVector({ x : nextPoint.x - point.x, y : nextPoint.y - point.y });
let bisectorPerp = addVectors(v1, v2);
bisectorPerp = bisectorPerp / absoluteValue(dot(v1, bisectorPerp));
return {x : - (bisectorPerp.y), y : bisectorPerp.x};
}
This function returns bisectors of the same length as in your last function, without the need of the extra getIntersection function.