I'm building a neural network and I don't know how to access the model weights for each layer.
I've tried
model.input_size.weight
Code:
input_size = 784
hidden_sizes = [128, 64]
output_size = 10
# Build a feed-forward network
model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]),
nn.ReLU(),
nn.Linear(hidden_sizes[0], hidden_sizes[1]),
nn.ReLU(),
nn.Linear(hidden_sizes[1], output_size),
nn.Softmax(dim=1))
I expected to get the weights but I got
'Sequential' object has no attribute 'input_size'
I've tried many ways, and it seems that the only way is by naming each layer by passing OrderedDict
from collections import OrderedDict
model = nn.Sequential(OrderedDict([
('fc1', nn.Linear(input_size, hidden_sizes[0])),
('relu1', nn.ReLU()),
('fc2', nn.Linear(hidden_sizes[0], hidden_sizes[1])),
('relu2', nn.ReLU()),
('output', nn.Linear(hidden_sizes[1], output_size)),
('softmax', nn.Softmax(dim=1))]))
So to access the weights of each layer, we need to call it by its own unique layer name.
For example to access weights of layer 1 model.fc1.weight
Parameter containing:
tensor([[-7.3584e-03, -2.3753e-02, -2.2565e-02, ..., 2.1965e-02,
1.0699e-02, -2.8968e-02],
[ 2.2930e-02, -2.4317e-02, 2.9939e-02, ..., 1.1536e-02,
1.9830e-02, -1.4294e-02],
[ 3.0891e-02, 2.5781e-02, -2.5248e-02, ..., -1.5813e-02,
6.1708e-03, -1.8673e-02],
...,
[-1.2596e-03, -1.2320e-05, 1.9106e-02, ..., 2.1987e-02,
-3.3817e-02, -9.4880e-03],
[ 1.4234e-02, 2.1246e-02, -1.0369e-02, ..., -1.2366e-02,
-4.7024e-04, -2.5259e-02],
[ 7.5356e-03, 3.4400e-02, -1.0673e-02, ..., 2.8880e-02,
-1.0365e-02, -1.2916e-02]], requires_grad=True)