I want to stop the training when it reaches a certain percentage, say 98%. I tried many ways and search on Google with no luck. What I do is using EarlyStopping
like this:
es = EarlyStopping(monitor='val_acc', baseline=0.98, verbose=1)
model.fit(tr_X, tr_y, epochs=1000, batch_size=1000, validation_data=(ts_X, ts_y), verbose=1, callbacks=[es])
_, train_acc = model.evaluate(tr_X, tr_y, verbose=0)
_, test_acc = model.evaluate(ts_X, ts_y, verbose=0)
print('>> Train: %.3f, Test: %.3f' % (train_acc, test_acc))
This isn't correct. I would truly appreciate if someone can suggest a way to achieve this goal.
Thank you,
You can create a new callback like that :
class EarlyStoppingByValAcc(Callback):
def __init__(self, monitor='val_acc', value=0.98, verbose=1):
super(Callback, self).__init__()
self.monitor = monitor
self.value = value
self.verbose = verbose
def on_epoch_end(self, epoch, logs={}):
current = logs.get(self.monitor)
if current is None:
warnings.warn("Early stopping requires %s available!" % self.monitor, RuntimeWarning)
if current > self.value:
if self.verbose > 0:
print("Epoch %05d: early stopping THR" % epoch)
self.model.stop_training = True
and you can use it like that :
callbacks = [
EarlyStoppingByValAcc(monitor='val_acc', value=0.98, verbose=1),
]
model.fit(tr_X, tr_y, epochs=1000, batch_size=1000, validation_data=(ts_X, ts_y), verbose=1, callbacks=callbacks)