Is it possible to average the output of a previous layer over the training batch"
I have tried calling the Keras Average layer on the output of a Dense layer.
Here's a simple example.
from keras.models import Model
from keras import layers
from keras import Input
from keras.utils import plot_model
input_tensor = layers.Input(shape=(784,))
output = layers.Dense(10,)(input_tensor)
average = layers.Average()(output)
avgout = Model(input_tensor, avgout)
avgout.summary()
The "avgout" layer should give the mean output of the output layer. The result:
ValueError Traceback (most recent call last)
<ipython-input-7-9d5576113651> in <module>
6 input_tensor = layers.Input(shape=(784,))
7 output = layers.Dense(10,)(input_tensor)
----> 8 average = layers.Average()(output)
9 avgout = Model(input_tensor, avgout)
10 avgout.summary()
~/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py in __call__(self, inputs, **kwargs)
429 'You can build it manually via: '
430 '`layer.build(batch_input_shape)`')
--> 431 self.build(unpack_singleton(input_shapes))
432 self.built = True
433
~/anaconda3/lib/python3.7/site-packages/keras/layers/merge.py in build(self, input_shape)
66 # Used purely for shape validation.
67 if not isinstance(input_shape, list):
---> 68 raise ValueError('A merge layer should be called '
69 'on a list of inputs.')
70 if len(input_shape) < 2:
ValueError: A merge layer should be called on a list of inputs.
The Average layer in keras computer the average of multiple tensors, but not the mean of one tensor.
What you can do is using keras backend mean :
from keras import backend as K
from keras.models import Model
from keras import layers
from keras import Input
from keras.utils import plot_model
def mean(input):
return K.mean(input, axis=1)
input_tensor = layers.Input(shape=(784,))
output = layers.Dense(10,)(input_tensor)
average = layers.Lambda(mean, input_shape=(10,))(output)
avgout = Model(input_tensor, average)
avgout.summary()