Search code examples
audiostaticdetectiondetectnoise

I need to analyse many audio WAV files for characteristic noise, ideas?


I need to be able to analyze (search thru) hundreds of WAV files and detect but not remove static noise. As done currently now, I must listen to each conversation and find the characteristic noise/static manually, which takes too much time. Ideally, I would need a program that can read each new WAV file and be able to detect characteristic signatures of the static noise such as periods of bursts of white noise or full audio band, high amplitude noise (like AM radio noise over phone conversation such as a wall of white noise) or bursts of peek high frequency high amplitude (as in crackling on the phone line) in a background of normal voice. I do not need to remove the noise but simply detect it and flag the recording for further troubleshooting. Ideas?

I can listen to the recordings and find the static or crackling but this takes time. I need an automated or batch process that can run on its own and flag the troubled call recordings (WAV files for a phone PBX). These are SIP and analog conversations depending on the leg of the conversation so RTSP/SIP packet analysis might be an option, but the raw WAV file is the simplest. I can use Audacity, but this still requires opening each file and looking at the visual representation of the audio spectrometry and is only a little faster than listening to each call but still cumbersome.

I currently have no code or methods for this task. I simply listen to each call wav file to find the noise.

I need a batch Wav file search that can render wav file recordings that contain the characteristic noise or static or crackling over the recording phone conversation.


Solution

  • Unless you can tell the program how the noise looks like, it's going to be challenging to run any sort of batch processing. I was facing a similar challenge and that prompted me to develop (free and open source) software to help user in audio exploration, analysis and signal separation:

    Essentially, it visualises audio as a 2d scatter plot rather than only "linear", as in waveform or spectrogram. When you upload audio the following happens:

    1. Onsets are detected (based on high-frequency content algorithm from aubio) according to the threshold you set. Set it to None if you want all.
    2. Per each audio fragment, calculate audio features based on your selection. There's no universal best set of features, all depends on the application. You might try for starter with e.g. Pitch statistics. Consider setting proper values for bandpass filter and sample length (that's the length of audio fragment we're going to use). Sample length could be in future established dynamically. Check docs for more info.
    3. The result is that for each fragment you have many features, e.g. 6 or 60. That means we have then k-dimensional (where k is number of features) structure, which we then project to 2d space with dimensionality reduction algorithm of your selection. Uniform Manifold Approximation and Projection is a sound choice.
    4. In theory, the resulting embedding should be such that similar sounds (according to features we have selected) are closely together, while different further apart. Your noise should be now separated from your "not noise" and form cluster.
    5. When you hover over the graph, in right-upper corner a set of icons appears. One is lasso selection. Use it to mark points, inspect spectrogram and e.g. download table with features that describe that signal. At that moment you can also reduce the noise (extra button appears) in a similar way to Audacity - it analyses the spectrum and reduces these frequencies with some smoothing.

    It does not completely solve your problem right now, but could severely cut the effort. Going through hundreds of wavs could take better part of the day, but you will be done. Want it automated? There's CLI (command-line interface) that I am developing at the same time. In not-too-distant future it should take what you have labelled as noise and signal and then use supervised machine learning to go through everything in batch mode.

    Suggestions / feedback? Drop an issue on GitHub.