Let's define list type
list = forall 'a, 'x. ('a -> 'x -> 'x) -> 'x -> 'x
where for instance
nil = Λ'a . Λ'x . λ(c : 'a -> 'x -> 'x) . λ(e : 'x) . e
cons = Λ'a . Λ'x . λ(head : 'a) . λ(tail : list 'a 'x) . λ(c : 'a -> 'x -> 'x) . λ(e : 'x) . c head (tail c e)
I am trying to define function zip
of type
zip : forall 'a, 'b, 'c, 'x. ('a -> 'b -> 'c) -> list 'a 'x -> list 'b 'x -> list 'c 'x
That intuitively does
zip (+) [1,2,3] [4,5,6] = [5,7,9]
zip (λa . λb . a) [1,2] [2,3,4] = [1,2]
zip (λa . λb . a) [2,3,4] [1,2] = [2,3]
Note that it truncates the longer list to fit the shorter.
The main problem I encounter here is that I cannot "iterate" over two lists at once. How can implement such a function in system F? Is it even possible?
Okay, I managed to write solution for it. First of all let's define helper option
type:
option = forall 'a, 'x. ('a -> 'x) -> 'x -> 'x
Which has two constructors:
none = Λ'a . Λ'x . λ (onsome : 'a -> 'x) . λ (onnone : 'x) . onnone
some = Λ'a . Λ'x . λ (elem : 'a) . λ (onsome : 'a -> 'x) . λ (onnone : 'x) . onsome elem
Next step are functions that will extract head
and tail
of the list. head
will return option 'elemtype
to handle empty list case, but tail
will just return empty list on empty list (in similar manner to predecessor function on Church numerals)
head = Λ 'a . λ (l : list 'a) . l (λ (elem : 'a) . λ (p : option 'a) . some elem) none
tail = Λ 'a . λ (l : list 'a) .
pair_first
( l (λ (elem : 'a) . λ (p : pair (list 'a) (list 'a)) .
make_pair (list 'a) (list 'a)
(pair_second (list 'a) (list 'a) p)
(cons 'a elem (pair_second (list 'a) (list 'a) p)))
(make_pair (list 'a) (list 'a) (nil 'a) (nil 'a)))
The idea of head
is that we start aggregating our list starting with none
on empty list and for each new element from the left we set this element as our result wrapped by some
to preserve typing.
tail
on the other hand does not need option
to be well defined, because in case of empty list we may just return an empty list. It looks very ugly, but uses same technique as predecessor of natural numbers. I assume pair
interface is known.
Next, let's define listmatch
function that will pattern match on given list
listmatch = Λ 'a . Λ 'x . λ (l : list 'a) . λ (oncons : 'a -> list 'a -> 'x) . λ (onnil : 'x) .
(head 'a l)
(λ (hd : 'a) . oncons hd (tail 'a l))
onnil
This function helps us distinguish empty list and non-empty list and perform some actions after its destruction.
Almost finally, we would like to have foldl2
function that given function f
, empty case em
and two lists [a,b,c]
and [x,y]
returns something like this: f(f(em a x) b y)
(shrinks lists to the shorter one cutting off the tail).
It can be defined as
foldl2 =
Λ 'a . Λ 'b . Λ 'c .
λ (f : 'c -> 'a -> 'b -> 'c) . λ (em : 'c) . λ (la : list 'a) . λ (lb : list 'b) .
pair_first 'c (list 'b)
((reverse 'a la)
( λ (el : 'a) . λ (p : pair 'c (list 'b)) .
listmatch 'a (pair 'c (list 'b)) (pair_second 'c (list 'b) p)
(λ (hd : 'a) . λ (tl : list 'a) .
make_pair 'c (list 'b)
(f (pair_first 'c (list 'b) p) el hd)
tl)
(make_pair 'c (list 'b) (pair_first 'c (list 'b) p) (nil 'a))
)
(make_pair 'c (list 'b) em lb))
After this the zip
is just in our hands:
zip =
Λ 'a . Λ 'b . Λ 'c .
λ (f : 'a -> 'b -> 'c) . λ (la : list 'a) . λ (lb : list 'b) .
reverse 'c
(foldl2 'a 'b 'c
(λ (lt : 'c) . λ (a : 'a) . λ (b : 'b) . cons 'c (f a b) lt)
(nil 'c) la lb)