Search code examples
pythoncolumnsorting

Python Pandas Column Sort by Count


I am still new to python and pandas. I am trying to figure out how to sort the data according to each column's row count. The count of the row excluding NaN is:

np.count_nonzero(~np.isnan(df.iloc[:, j]), where j is the column number

import pandas as pd
x = np.nan
data = {"A": [22133.97, 22151.06, 22836.96, 22035.42, 23306.39, 23881.29, 23206.37], "B": [95.924, 107.1005, 123.5775, 107.8946, x, x, x], "C": [74.169, 74.075, 77.564, 76.338, 79.356, 81.666, x], "D": [36.205, 35.435, 36.542, 34.424, 37.457, x, x], "E": [68.048, 65.554, 68.093, 68.37, 74.233, 77.095, 75.156]}
dates = pd.date_range('1/1/2000', periods = 7)
df = pd.DataFrame(data, index = dates)

The dataset now looks like this:

                   A         B       C       D       E
2000-01-01  22133.97   95.9240  74.169  36.205  68.048
2000-01-02  22151.06  107.1005  74.075  35.435  65.554
2000-01-03  22836.96  123.5775  77.564  36.542  68.093
2000-01-04  22035.42  107.8946  76.338  34.424  68.370
2000-01-05  23306.39       NaN  79.356  37.457  74.233
2000-01-06  23881.29       NaN  81.666     NaN  77.095
2000-01-07  23206.37       NaN     NaN     NaN  75.156

Is there any in-built pandas function to sort the columns such that it looks like the following (i.e column A has 7 rows, so it remains, then searches for the next most column which is in E and it shifts it forward and places it beside Column A so on and so forth).

                   A       E       C       D         B
2000-01-01  22133.97  68.048  74.169  36.205   95.9240
2000-01-02  22151.06  65.554  74.075  35.435  107.1005
2000-01-03  22836.96  68.093  77.564  36.542  123.5775
2000-01-04  22035.42  68.370  76.338  34.424  107.8946
2000-01-05  23306.39  74.233  79.356  37.457       NaN
2000-01-06  23881.29  77.095  81.666     NaN       NaN
2000-01-07  23206.37  75.156     NaN     NaN       NaN

Would appreciate any help. Thanks!


Solution

  • I think this code will work.

    df=df[df.isna().sum().sort_values().keys()]
    


    Output:

    >>>df[df.isna().sum().sort_values().keys()]
                       A       E       C       D         B
    2000-01-01  22133.97  68.048  74.169  36.205   95.9240
    2000-01-02  22151.06  65.554  74.075  35.435  107.1005
    2000-01-03  22836.96  68.093  77.564  36.542  123.5775
    2000-01-04  22035.42  68.370  76.338  34.424  107.8946
    2000-01-05  23306.39  74.233  79.356  37.457       NaN
    2000-01-06  23881.29  77.095  81.666     NaN       NaN
    2000-01-07  23206.37  75.156     NaN     NaN       NaN