I do have a pandas DataFrame (size = 34,19) which I want to use as a lookup table.
But the values I want to look up are "between" the values in the dataframe
For example:
0.1 0.2 0.3 0.4 0.5
0.1 4.01 31.86 68.01 103.93 139.2
0.2 24.07 57.49 91.37 125.21 158.57
0.3 44.35 76.4 108.97 141.57 173.78
0.4 59.66 91.02 122.8 154.62 186.13
0.5 87.15 117.9 148.86 179.83 210.48
0.6 106.92 137.41 168.26 198.99 229.06
0.7 121.73 152.48 183.4 213.88 243.33
I know want to look up the value for x = 5.5 y = 1.004, so the answer should be around 114.
I tried it with different methods from scipy but the values I get are always way off.
Last method I used was :inter = interpolate.interpn([np.array(np.arange(34)), np.array(np.arange(19))], np_matrix, [x_value, y_value],)
I even get wrong values for points in the grid which do exist.
Can someone tell me what I'm doing wrong or recommend an easy solution for the task?
EDIT:
An additional problem is: My raw data, from an .xlsx file, look like:
0.1 0.2 0.3 0.4 0.5
0.1 4.01 31.86 68.01 103.93 139.2
0.2 24.07 57.49 91.37 125.21 158.57
0.3 44.35 76.4 108.97 141.57 173.78
0.4 59.66 91.02 122.8 154.62 186.13
0.5 87.15 117.9 148.86 179.83 210.48
0.6 106.92 137.41 168.26 198.99 229.06
0.7 121.73 152.48 183.4 213.88 243.33
But pandas adds an Index column:
0.1 0.2 0.3 0.4 0.5
0 0.1 4.01 31.86 68.01 103.93 139.2
1 0.2 24.07 57.49 91.37 125.21 158.57
2 0.3 44.35 76.4 108.97 141.57 173.78
3 0.4 59.66 91.02 122.8 154.62 186.13
4 0.8 87.15 117.9 148.86 179.83 210.48
5 1.0 106.92 137.41 168.26 198.99 229.06
6 1.7 121.73 152.48 183.4 213.88 243.33
So if I want to access x = 0.4 y = 0.15 I have to input x = 3, y = 0.15.
Data are read with:
model_references = pd.ExcelFile(model_references_path)
Matrix = model_references.parse('Model_References')
n = Matrix.stack().reset_index().values
out = interpolate.griddata(n[:,0:2], n[:,2], (Stroke, Current), method='cubic')
You can reshape data to 3 columns with stack
- first column for index
, second for columns and last for values, last get values by scipy.interpolate.griddata
from scipy.interpolate import griddata
a = 5.5
b = 1.004
n = df.stack().reset_index().values
#https://stackoverflow.com/a/8662243
out = griddata(n[:,0:2], n[:,2], [(a, b)], method='linear')
print (out)
[104.563]
Detail:
n = df.stack().reset_index().values
print (n)
[[ 1. 1. 4.01]
[ 1. 2. 31.86]
[ 1. 3. 68.01]
[ 1. 4. 103.93]
[ 1. 5. 139.2 ]
[ 2. 1. 24.07]
[ 2. 2. 57.49]
[ 2. 3. 91.37]
[ 2. 4. 125.21]
[ 2. 5. 158.57]
[ 3. 1. 44.35]
[ 3. 2. 76.4 ]
[ 3. 3. 108.97]
[ 3. 4. 141.57]
[ 3. 5. 173.78]
[ 4. 1. 59.66]
[ 4. 2. 91.02]
[ 4. 3. 122.8 ]
[ 4. 4. 154.62]
[ 4. 5. 186.13]
[ 5. 1. 87.15]
[ 5. 2. 117.9 ]
[ 5. 3. 148.86]
[ 5. 4. 179.83]
[ 5. 5. 210.48]
[ 5. 1. 106.92]
[ 5. 2. 137.41]
[ 5. 3. 168.26]
[ 5. 4. 198.99]
[ 5. 5. 229.06]
[ 6. 1. 121.73]
[ 6. 2. 152.48]
[ 6. 3. 183.4 ]
[ 6. 4. 213.88]
[ 6. 5. 243.33]]