I want to group 100 users based on a categorical variable (which can be low, medium, or high). The group size should be 3. I want to get the maximal heterogeneity within groups, assuming that users are distributed equally. I wonder if I can use some clustering algorithm to group based on the dissimilarity? Any suggestions?
I don't believe you need a clustering algorithm to group the data based upon a categorical variable.
Based on you question, I think this should work.
# Code
from sklearn.model_selection import train_test_split
group1, group23 = train_test_split(data, test_size=2/3., stratify=data['lab'])
group2, group3 = train_test_split(group23, test_size=1/2., stratify=group23['lab'])
Stratify
makes sure that the maximum heterogeneity is maintained for the given categorical value
.
# Sample output
print(data)
val1 val2 lab
0 1 1 L
1 2 2 L
2 3 3 L
3 4 4 M
4 5 5 M
5 6 6 M
6 7 7 H
7 8 8 H
8 9 9 H
print(group1)
val1 val2 lab
4 5 5 M
1 2 2 L
6 7 7 H
print(group2)
val1 val2 lab
8 9 9 H
2 3 3 L
3 4 4 M
print(group3)
val1 val2 lab
0 1 1 L
7 8 8 H
5 6 6 M