I have 2 sets of dataframe, and i want to clean df1['Fruits'] if it contains df2['Fruits'] string
df1
Name Fruits
--------------
Dina Pineapple, [Y*]
Maria PTC*, Apple
Johny Durian, 1-6
Johny 5,6 Rambutan
Maria Apple (Red), [Y] *
Dina [Y] *, Peach88
Dina Kiwi/Qiwi, PS*
df2
Fruits tag
-------------
Apple 20
Pineapple 30
Rambutan 40
Durian 50
Apple (Red) 25
Peach88 55
Kiwi/Qiwi 25
i've tried
df1.loc[df1['Fruits'].contains(df2['Fruits']),'Fruits'] = df2['Fruits']
but it shows
'Series' object has no attribute 'contains'
So what i expected to get is
df1
Name Fruits
--------------
Dina Pineapple
Maria Apple
Johny Durian
Johny Rambutan
Maria Apple (Red)
Dina Peach88
Dina Kiwi/Qiwi
Use pandas.Series.str.extract
:
reg = '(%s)' % '|'.join(df2['Fruits'])
# Make regex expression using df2['Fruits']
df1['Fruits'] = df1['Fruits'].str.extract(reg)
Output:
Name Fruits
0 Dina Pineapple
1 Maria Apple
2 Johny Durian
3 Johny Rambutan
Explanation of '(%s)' % '|'.join(df2['Fruits'])
:
'|'.join(df2['Fruits'])
: creates |
separated words for or
operation in regex. Returns Pineapple|Apple|Durian|Rambutan
(%s) % ...
: This is called string formatting, and equivalent of:
str.format
: '({})'.format('|'.join(df2['Fruits']))
, '(' + '|'.join(df2['Fruits']) + ')'
(Apple|Pineapple|Rambutan|Durian)
, a capture group, mandatory for pd.Series.str.extract
to know what to extract.