I am trying to plot my data and exhibit like Excel's visualization.
The testing data is below:
# test
yq colA_1 colA_2 colB_1 colB_2
2014 Q1 1.072513 1.026764 0.07251283 0.026764360
2014 Q2 1.097670 1.037183 0.06731060 0.024912609
2014 Q3 1.111137 1.039893 0.06478415 0.022297469
2014 Q4 1.126760 1.042039 0.06510137 0.018822622
2015 Q1 1.143480 1.043719 0.06616912 0.016513022
2015 Q2 1.169457 1.053273 0.06539907 0.015513867
2015 Q3 1.183965 1.056728 0.06554381 0.016189236
2015 Q4 1.193858 1.059065 0.05954961 0.016339011
2016 Q1 1.201557 1.060292 0.05078975 0.015878297
2016 Q2 1.221607 1.069681 0.04459420 0.015577685
2016 Q3 1.239693 1.070330 0.04706882 0.012871887
2016 Q4 1.265686 1.069209 0.06016474 0.009578374
I use ggplot2
to plot the data with line and bar graph combining them into one plot.
library(ggplot2)
library(zoo)
ggplot(data = test, aes(x = yq)) +
geom_line(aes(y = colA_1), colour = 'red') +
geom_line(aes(y = colA_2), colour = 'darkblue') +
geom_col(aes(y = colB_1 * 5), colour = "red", fill = "white", position = "dodge") +
geom_col(aes(y = colB_2 * 5), colour = "darkblue", fill = "lightblue", position = "dodge") +
scale_x_yearqtr(format = "%YQ%q") +
scale_y_continuous(name = "Relativity",
sec.axis = sec_axis(~./5, name = "YQ Growth",
labels = function(b) { paste0(round(b * 100, 0), "%")})) +
theme(axis.title.y = element_text(color = "red"),
axis.title.y.right = element_text(color = "blue"))
However, I want my plot showing like this:
In Excel, we can just use clustered column with different series.
How to modify my code to make my plot looks close to Excel design?
Moreover, the secondary axis looks pretty well in Excel. How to modify it? I guess R cannot automatically adjust plot's axis like Excel.
Data:
> dput(test)
structure(list(yq = structure(c(2014, 2014.25, 2014.5, 2014.75,
2015, 2015.25, 2015.5, 2015.75, 2016, 2016.25, 2016.5, 2016.75
), class = "yearqtr"), colA_1 = c(1.07251282607859, 1.09766991723034,
1.11113694497572, 1.126759608788, 1.14348005732242, 1.16945650644991,
1.18396509431146, 1.19385770162439, 1.20155712357527, 1.22160748220368,
1.23969293134377, 1.26568584199143), colA_2 = c(1.02676435956276,
1.03718273614132, 1.03989293246398, 1.04203868693514, 1.04371934229503,
1.05327345142754, 1.0567280041501, 1.05906456813454, 1.06029182761268,
1.06968101384557, 1.07033008728214, 1.06920868464074), colB_1 = c(0.0725128260785901,
0.0673106045814515, 0.0647841488910708, 0.0651013729757453, 0.0661691212619855,
0.0653990676912228, 0.0655438104772257, 0.059549607842762, 0.0507897500100214,
0.0445941986436791, 0.0470688175690868, 0.0601647418024032),
colB_2 = c(0.0267643595627607, 0.0249126094335301, 0.0222974693061362,
0.0188226218410159, 0.0165130222668561, 0.0155138672535979,
0.0161892356035436, 0.0163390106460137, 0.0158782966321198,
0.0155776853539686, 0.0128718866904485, 0.00957837398344408
)), class = c("data.table", "data.frame"), row.names = c(NA,
-12L), .internal.selfref = <pointer: 0x000002254bd91ef0>)
test <- fread("yq colA_1 colA_2 colB_1 colB_2
2014 Q1 1.072513 1.026764 0.07251283 0.02676436
2014 Q2 1.09767 1.037183 0.0673106 0.024912609
2014 Q3 1.111137 1.039893 0.06478415 0.022297469
2014 Q4 1.12676 1.042039 0.06510137 0.018822622
2015 Q1 1.14348 1.043719 0.06616912 0.016513022
2015 Q2 1.169457 1.053273 0.06539907 0.015513867
2015 Q3 1.183965 1.056728 0.06554381 0.016189236
2015 Q4 1.193858 1.059065 0.05954961 0.016339011
2016 Q1 1.201557 1.060292 0.05078975 0.015878297
2016 Q2 1.221607 1.069681 0.0445942 0.015577685
2016 Q3 1.239693 1.07033 0.04706882 0.012871887
2016 Q4 1.265686 1.069209 0.06016474 0.009578374
", header = T)
test$yq <- as.yearqtr(test$yq)
This is a tricky one. Most likely, there are different ways to achieve the goal. Here, is what I would do.
First reshape the data from wide to long format, extract the grouping parameters A
, B
and 1
, 2
, resp. Then call ggplot()
with appropriate scales for colour and fill:
library(ggplot2)
library(zoo)
library(data.table)
long <- melt(setDT(test), id.vars = "yq")[
, grp1 := stringr::str_sub(variable, 4, 4)][
, grp2 := stringr::str_sub(variable, 6, 6)][]
ggplot(data = long, aes(x = yq, y = value, colour = grp2, fill = grp2)) +
geom_col(aes(y = 10 * value), data = long[grp1 == "B"], position = "dodge") +
geom_line(data = long[grp1 == "A"]) +
scale_colour_manual(values = c("red", "darkblue")) +
scale_fill_manual(values = c("white", "lightblue")) +
scale_x_yearqtr(format = "%YQ%q") +
scale_y_continuous(name = "Relativity",
sec.axis = sec_axis(~./10, name = "YQ Growth",
labels = scales::percent)) +
theme(axis.title.y = element_text(color = "red"),
axis.title.y.right = element_text(color = "darkblue"),
legend.position = "none")
In a comment, the OP has asked to "add the percent numbers one each bar".
It is possible but requires some experimentation with the width
parameter passed to of the different calls of position_dodge()
:
sec_axis_mult <- 10
ggplot(data = long, aes(x = yq, y = value, colour = grp2, fill = grp2,
label = scales::percent(value, accuracy = 0.1))) +
geom_col(aes(y = sec_axis_mult * value), data = long[grp1 == "B"],
position = position_dodge2(width = 0)) +
geom_text(aes(y = sec_axis_mult * value), data = long[grp1 == "B"],
position = position_dodge(width = 0.25),
vjust = -0.3, size = 3) +
geom_line(data = long[grp1 == "A"]) +
scale_colour_manual(values = c("red", "darkblue")) +
scale_fill_manual(values = c("white", "lightblue")) +
scale_x_yearqtr(format = "%YQ%q") +
scale_y_continuous(name = "Relativity",
sec.axis = sec_axis(~./sec_axis_mult, name = "YQ Growth",
labels = scales::percent)) +
theme(axis.title.y = element_text(color = "red"),
axis.title.y.right = element_text(color = "darkblue"),
legend.position = "none")