I'll try to make myself as clear as possible: I have 50k tweets I would like to do text mining on, and I'd like to improve my code. The data look like below (sample_data
).
I'm interested in lemmatizing the words I have cleaned and tokenized (which are the values of the twToken
keys)
sample_data = [{'twAuthor': 'Jean Lassalle',
'twMedium': 'iPhone',
'nFav': None,
'nRT': '33',
'isRT': True,
'twText': ' RT @ColPeguyVauvil : @jeanlassalle "allez aux bouts de vos rêves" ',
'twParty': 'Résistons!',
'cleanText': ' rt colpeguyvauvil jeanlassalle allez aux bouts de vos rêves ',
'twToken': ['colpeguyvauvil', 'jeanlassalle', 'allez', 'bouts', 'rêves']},
{'twAuthor': 'Jean-Luc Mélenchon',
'twMedium': 'Twitter Web Client',
'nFav': '806',
'nRT': '375',
'isRT': False,
'twText': ' (2/2) Ils préfèrent créer une nouvelle majorité cohérente plutôt que les alliances à géométrie variable opportunistes de leur direction. ',
'twParty': 'La France Insoumise',
'cleanText': ' 2 2 ils préfèrent créer une nouvelle majorité cohérente plutôt que les alliances à géométrie variable opportunistes de leur direction ',
'twToken': ['2', '2', 'préfèrent', 'créer', 'nouvelle', 'majorité', 'cohérente', 'plutôt', 'alliances', 'géométrie', 'variable', 'opportunistes', 'direction']},
{'twAuthor': 'Nathalie Arthaud',
'twMedium': 'Android',
'nFav': '37',
'nRT': '24',
'isRT': False,
'twText': ' #10mai Commemoration fin de l esclavage. Reste à supprimer l esclavage salarial defendu par #Macron et Hollande ',
'twParty': 'Lutte Ouvrière',
'cleanText': ' 10mai commemoration fin de l esclavage reste à supprimer l esclavage salarial defendu par macron et hollande ',
'twToken': ['10mai', 'commemoration', 'fin', 'esclavage', 'reste', 'supprimer', 'esclavage', 'salarial', 'defendu', 'macron', 'hollande']
}]
However, there are no reliable French lemmatizers in Python. So I used some resources to have my own French words lemmatizer dictionary. The dict looks like this:
sample_lemmas = [{"ortho":"rêves","lemme":"rêve","cgram":"NOM"},
{"ortho":"opportunistes","lemme":"opportuniste","cgram":"ADJ"},
{"ortho":"préfèrent","lemme":"préférer","cgram":"VER"},
{"ortho":"nouvelle","lemme":"nouveau","cgram":"ADJ"},
{"ortho":"allez","lemme":"aller","cgram":"VER"},
{"ortho":"défendu","lemme":"défendre","cgram":"VER"}]
So that ortho
is the written form of a word (eg. processed), lemme
is the lemmatized form of the word (eg. process) and cgram
is the grammatical category of a word (eg VER for a verb).
So what I wanted to do was to create a twLemmas
key for each tweet, which is a list of the lemmas derived from the twToken
list. So I loop through each tweet in sample_data
, then I loop through each token in twToken
, see if the token exists in my lemmas dictionary sample_lemmas
, and if it does, I retrieve the lemma from the sample_lemmas
dictionary and add it to the list that will be fed in each twLemmas
key. If it doesn't, I simply add the word to the list.
My code is the following :
list_of_ortho = [] #List of words used to compare if a token doesn't exist in my lemmas dictionary
for wordDict in sample_lemmas: #This loop feeds this list with each word
list_of_ortho.append(wordDict["ortho"])
for elemList in sample_data: #Here I iterate over each tweet in my data
list_of_lemmas = [] #This is the temporary list which will be the value to each twLemmas key
for token in elemList["twToken"]: #Here, I iterate over each token/word of a tweet
for wordDict in sample_lemmas:
if token == wordDict["ortho"]:
list_of_lemmas.append(wordDict["lemme"])
if token not in list_of_ortho: #And this is to add a word to my list if it doesn't exist in my lemmas dictionary
list_of_lemmas.append(token)
elemList["lemmas"] = list_of_lemmas
sample_data
The loop works fine, however it takes about 4 hours to complete. Now I know I'm no programmer nor a Python expert, and I know that it will take time to complete no matter what. However, this is why I wanted to ask you if anyone had a better idea about how I could improve my code ?
Thank you if anyone can take the time to understand my code and help me. I hope I was clear enough (English is not my first language sorry).
Use a dictionary that maps orthos to lemmes:
ortho_to_lemme = {word_dict["ortho"]: word_dict["lemme"] for word_dict in sample_lemmas}
for tweet in sample_data:
tweet["twLemmas"] = [
ortho_to_lemme.get(token, token) for token in tweet["twToken"]
]