Given a graph i need to generate all topological orderings. For instance, given the following graph:
i want to generate all topological orderings, which are:
Because many topological orderings may exist, I need to generate them lazily. Currently, I have a working implementation that is recursive and works on top of the scala-graph
library:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.mutable.ArrayStack
import scala.collection.Set
def allTopologicalSorts[T](graph: Graph[T, DiEdge]): Stream[List[graph.NodeT]] = {
val indegree: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
def isSource(node: graph.NodeT): Boolean = indegree.get(node).get == 0
def getSources(): Set[graph.NodeT] = graph.nodes.filter(node => isSource(node))
def processSources(sources: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], topOrder: List[graph.NodeT], cnt: Int): Stream[List[graph.NodeT]] = {
if (sources.nonEmpty) {
// `sources` contain all the nodes we can pick
// --> generate all possibilities
sources.toStream.flatMap(src => {
val newTopOrder = src :: topOrder
var newSources = sources - src
// Decrease the in-degree of all adjacent nodes
var newIndegrees = indegrees
for (adjacent <- src.diSuccessors) {
val newIndeg = newIndegrees.get(adjacent).get - 1
newIndegrees = newIndegrees.updated(adjacent, newIndeg)
// If in-degree becomes zero, add to sources
if (newIndeg == 0) {
newSources = newSources + adjacent
}
}
processSources(newSources, newIndegrees, newTopOrder, cnt + 1)
})
}
else if (cnt != graph.nodes.size) {
throw new Error("There is a cycle in the graph.")
}
else {
topOrder.reverse #:: Stream.empty[List[graph.NodeT]]
}
}
processSources(getSources(), indegree, List[graph.NodeT](), 0)
}
Now, i can generate all (or only a few) topological orderings as follows:
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
allTopologicalSorts(graph) foreach println
How can i make the algorithm tail recursive but still lazy?
Implementing this variation on topological sort without blowing up the stack and without computing all possibilities at once has been painful. I ended up with the following implementation:
import scalax.collection.Graph
import scalax.collection.GraphPredef._
import scalax.collection.GraphEdge._
import scala.collection.Set
object test extends App {
class TopSorter[T](val graph: Graph[T, DiEdge]) extends Iterator[List[T]] {
final case class State[Node](indegrees: Map[Node, Int], topo: List[Node])
sealed trait TopoRes
final case class Res(order: List[graph.NodeT], sorter: Set[State[graph.NodeT]]) extends TopoRes
final case object Nil extends TopoRes
private[this] val indegs: Map[graph.NodeT, Int] = graph.nodes.map(node => (node, node.inDegree)).toMap
private[this] var nextOrder = nextTopo(Set(State(indegs, List[graph.NodeT]())))
override def hasNext: Boolean = nextOrder.isInstanceOf[Res]
override def next(): List[T] = nextOrder match {
case Res(order, sorter) => {
nextOrder = nextTopo(sorter)
order.map(_.value)
}
case Nil => throw new NoSuchElementException("next on empty iterator")
}
private def nextTopo(w: Set[State[graph.NodeT]]): TopoRes = {
if (w.isEmpty) {
Nil
}
else {
w.head match {
case State(indegrees, topo) => {
val sources = indegrees.keySet.filter(indegrees.get(_).get == 0)
if (sources.isEmpty) {
Res(topo.reverse, w.tail) // The result is the order + state to compute the next order
}
else {
sourcesLoop(sources, w.tail, topo, indegrees)
}
}
}
}
}
private def sourcesLoop(sources: Set[graph.NodeT], w: Set[State[graph.NodeT]], topo: List[graph.NodeT], indegrees: Map[graph.NodeT, Int]): TopoRes = {
if (sources.isEmpty) {
nextTopo(w)
}
else {
val source = sources.head
succLoop(source.diSuccessors, indegrees - source, sources, w, source, topo, indegrees)
}
}
private def succLoop(succs: Set[graph.NodeT], indegrees: Map[graph.NodeT, Int], sources: Set[graph.NodeT], w: Set[State[graph.NodeT]], source: graph.NodeT, topo: List[graph.NodeT], oldIndegrees: Map[graph.NodeT, Int]): TopoRes = {
if (succs.isEmpty) {
sourcesLoop(sources.tail, w + State(indegrees, source :: topo), topo, oldIndegrees)
}
else {
val succ = succs.head
succLoop(succs.tail, indegrees.updated(succ, indegrees.get(succ).get - 1), sources, w, source, topo, oldIndegrees)
}
}
}
val graph: Graph[Int, DiEdge] = Graph(2 ~> 4, 2 ~> 7, 4 ~> 5)
val it = new TopSorter(graph)
while (it.hasNext)
println(it.next())
}