I want to test a customized objective function for lightgbm in multi-class classification. I have specified the parameter "num_class=3". However, an error: "
Number of classes must be 1 for non-multiclass training" is thrown
I am using python 3.6 and lightgbm version 0.2
# iris data
from sklearn import datasets
import lightgbm as lgb
import numpy as np
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
# construct train-test
num_train = int(X.shape[0] / 3 * 2)
idx = np.random.permutation(X.shape[0])
x_train = X[idx[:num_train]]
x_test = X[idx[num_train:]]
y_train = y[idx[:num_train]]
y_test = y[idx[num_train:]]
# softmax function
def softmax(x):
'''
input x: an np.array of n_sample * n_class
return : an np.array of n_sample * n_class (probabilities)
'''
x = np.where(x>100, 100, x)
x = np.exp(x)
return x / np.reshape(np.sum(x, 1), [x.shape[0], 1])
# objective function
def objective(y_true, y_pred):
'''
input:
y_true: np.array of size (n_sample,)
y_pred: np.array of size (n_sample, n_class)
'''
y_pred = softmax(y_pred)
temp = np.zeros_like(y_pred)
temp[range(y_pred.shape[0]), y_true] = 1
gradient = y_pred - temp
hessian = y_pred * (1 - y_pred)
return [gradient, hessian]
# lightgbm model
model = lgb.LGBMClassifier(n_estimators=10000,
num_classes = 3,
objective = objective,
nthread=4)
model.fit(x_train, y_train,
eval_metric = 'multi_logloss',
eval_set = [(x_test, y_test), (x_train, y_train)],
eval_names = ['valid', 'train'],
early_stopping_rounds = 200, verbose = 100)
Let me answer my own question.
The arguments in the objective function should be:
y_true of size [n_sample, ]
y_pred of size [n_sample * n_class, ] instead of [n_sample, n_class]
To be more specific, y_pred should be like
y_pred = [first_class, first_class,..., second_class, second_class,..., third_class, third_class,...]
Moreover, gradient and hessian should be grouped in the same way.
def objective(y_true, y_pred):
'''
input:
y_true: np.array of size [n_sample,]
y_pred: np.array of size [n_sample * n_class, ]
return:
gradient and hessian should have exactly the same form of y_pred
'''
y_pred = np.reshape(y_pred, [num_train, 3], order = 'F')
y_pred = softmax(y_pred)
temp = np.zeros_like(y_pred)
temp[range(y_pred.shape[0]), y_true] = 1
gradient = y_pred - temp
hessian = y_pred * (1 - y_pred)
return [gradient.ravel(order = 'F'), hessian.ravel(order = 'F')]