I have the following dataframe
age sex cp
0 63.0 1.0 1.0
1 67.0 1.0 4.0
2 41.0 0.0 2.0
And I applied transformation process on each column as follows:
age = store_data['age']
age_bins = [0, 40, 60, 100]
age_categories = pd.cut(age, age_bins)
sex = store_data['sex']
sex_series = pd.Series(sex, dtype = "category")
sex_rename = sex_series.cat.rename_categories(['F','M'])
cp = store_data['cp']
cp_series = pd.Series(cp, dtype = "category")
cp_rename = cp_series.cat.rename_categories(["typical","atypical","non-anginal","asymptomatic"])
The output of each looks like this:
>>age_categories
0 (60, 100]
1 (60, 100]
2 (40, 60]
>>sex_rename
0 M
1 M
4 F
>>cp_rename
0 typical
1 asymptomatic
2 atypical
How can I update the original columns with the new transformed values: age_categories, sex_rename, cp_rename? I would like to keep the old names (age, sex, cp) as the head
Try eliminating the extra variables? I haven't run this as there's no data, but this should directly update your dataframe.
age_bins = [0, 40, 60, 100]
store_data['age'] = pd.cut(store_data['age'], age_bins)
__
store_data['sex'] = pd.Series(store_data['sex'], dtype = "category").cat.rename_categories(['F','M'])
__
store_data['cp'] = pd.Series(store_data['cp'], dtype = "category").cat.rename_categories(["typical","atypical","non-anginal","asymptomatic"])