After searching for some time, I cannot find a smooth R-esque solution.
I have a list of vectors that I want to convert to dataframes and add a column with the names of the vectors. I cant do this with cbind() and melt() to a single dataframe b/c there are vectors with different number of rows.
Basic example would be:
list<-list(a=c(1,2,3),b=c(4,5,6,7))
var<-"group"
What I have come up with and works is:
list<-lapply(list, function(x) data.frame(num=x,grp=""))
for (j in 1:length(list)){
list[[j]][,2]<-names(list[j])
names(list[[j]])[2]<-var
}
But I am trying to better use lapply() and have cleaner coding practices. Right now I rely so heavily on for and if statements, which a lot of the base functions do already and much more efficiently than I can code at this point.
The psuedo code I would like is something like:
list<-lapply(list, function(x) data.frame(num=x,get(var)=names(x))
Is there a clean way to get this done?
Second closely related question, if I already have a list of dataframes, why is it so hard to reassign column values and names using lapply()?
So using something like:
list<-list(a=data.frame(num=c(1,2,3),grp=""),b=data.frame(num=c(4,5,6,7),grp=""))
var<-"group"
#pseudo code
list<-lapply(list, function(x) x[,2]<-names(x)) #populate second col with name of df[x]
list<-lapply(list, function(x) names[[x]][2]<-var) #set 2nd col name to 'var'
The first line of pseudo code throws an error about matching row lengths. Why does lapply() not just loop over and repeat names(x) like the same function on a single dataframe does in a for loop?
For the second line, as I understand it I can use setNames() to reassign all the column names, but how do I make this work for just one of the col names?
Many thanks for any ideas or pointing to other threads that cover this and helping me understand the behavior of lapply() in this context.
A full R base approach without using loops
> l<-list(a=c(1,2,3),b=c(4,5,6,7))
> data.frame(grp=rep(names(l), lengths(l)), num=unlist(l), row.names = NULL)
grp num
1 a 1
2 a 2
3 a 3
4 b 4
5 b 5
6 b 6