I am trying to scrape a (football squad) table from Transfermarkt.com for a project but some columns have the same class name and cannot be differentiated.
Column [2,10] have unique classes and work fine. I am struggling to find a way to get the rest.
from bs4 import BeautifulSoup
import pandas as pd
headers = {'User-Agent':
'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/47.0.2526.106 Safari/537.36'}
page = "https://www.transfermarkt.com/hertha-bsc-u17/kader/verein/21066/saison_id/2018/plus/1"
pageTree = requests.get(page, headers=headers)
pageSoup = BeautifulSoup(pageTree.content, 'html.parser')
Players = pageSoup.find_all("a", {"class": "spielprofil_tooltip"})
Values = pageSoup.find_all("td", {"class": "zentriert"})
PlayersList = []
ValuesList = []
for i in range(0, 25):
PlayersList.append(Players[i].text)
ValuesList.append(Values[i].text)
df = pd.DataFrame({"Players": PlayersList, "Values": ValuesList})
I would like to scrape all columns on rows of that table.
Using bs4, pandas and css selectors. This separates out position e.g. goalkeeper from name. It doesn't include market value as is no values are given. For any given player - it shows all values for a player's nationality "/" separated; gives all values for transfer from "/" separated. columns with same class can be differentiated by nth-of-type
.
from bs4 import BeautifulSoup as bs
import requests
import pandas as pd
headers = {'User-Agent' : 'Mozilla/5.0'}
df_headers = ['position_number' , 'position_description' , 'name' , 'dob' , 'nationality' , 'height' , 'foot' , 'joined' , 'signed_from' , 'contract_until']
r = requests.get('https://www.transfermarkt.com/hertha-bsc-u17/kader/verein/21066/saison_id/2018/plus/1', headers = headers)
soup = bs(r.content, 'lxml')
position_number = [item.text for item in soup.select('.items .rn_nummer')]
position_description = [item.text for item in soup.select('.items td:not([class])')]
name = [item.text for item in soup.select('.hide-for-small .spielprofil_tooltip')]
dob = [item.text for item in soup.select('.zentriert:nth-of-type(3):not([id])')]
nationality = ['/'.join([i['title'] for i in item.select('[title]')]) for item in soup.select('.zentriert:nth-of-type(4):not([id])')]
height = [item.text for item in soup.select('.zentriert:nth-of-type(5):not([id])')]
foot = [item.text for item in soup.select('.zentriert:nth-of-type(6):not([id])')]
joined = [item.text for item in soup.select('.zentriert:nth-of-type(7):not([id])')]
signed_from = ['/'.join([item['title'].lstrip(': '), item['alt']]) for item in soup.select('.zentriert:nth-of-type(8):not([id]) [title]')]
contract_until = [item.text for item in soup.select('.zentriert:nth-of-type(9):not([id])')]
df = pd.DataFrame(list(zip(position_number, position_description, name, dob, nationality, height, foot, joined, signed_from, contract_until)), columns = df_headers)
print(df.head())
Example df.head