I'm trying to implement my own code based on this code. While i'm reading this code, I got confused here about this part. The part of the below function:
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
How did the author give these values?. I know when we start checking the 8 neighbors, but what are these numbers?. I mean these [1, 0, 1] and so on. And If I want to generate for 3D what are they going to be?.
This is below A star algorithm Python code:
"""
A* grid based planning
See Wikipedia article (https://en.wikipedia.org/wiki/A*_search_algorithm)
"""
import matplotlib.pyplot as plt
import math
show_animation = True
class Node:
def __init__(self, x, y, cost, pind):
self.x = x
self.y = y
self.cost = cost
self.pind = pind
def __str__(self):
return str(self.x) + "," + str(self.y) + "," + str(self.cost) + "," + str(self.pind)
def calc_final_path(ngoal, closedset, reso):
# generate final course
rx, ry = [ngoal.x * reso], [ngoal.y * reso]
pind = ngoal.pind
while pind != -1:
n = closedset[pind]
rx.append(n.x * reso)
ry.append(n.y * reso)
pind = n.pind
return rx, ry
def a_star_planning(sx, sy, gx, gy, ox, oy, reso, rr):
"""
gx: goal x position [m]
gx: goal x position [m]
ox: x position list of Obstacles [m]
oy: y position list of Obstacles [m]
reso: grid resolution [m]
rr: robot radius[m]
"""
nstart = Node(round(sx / reso), round(sy / reso), 0.0, -1)
ngoal = Node(round(gx / reso), round(gy / reso), 0.0, -1)
ox = [iox / reso for iox in ox]
oy = [ioy / reso for ioy in oy]
obmap, minx, miny, maxx, maxy, xw, yw = calc_obstacle_map(ox, oy, reso, rr)
motion = get_motion_model()
openset, closedset = dict(), dict()
openset[calc_index(nstart, xw, minx, miny)] = nstart
while 1:
c_id = min(
openset, key=lambda o: openset[o].cost + calc_heuristic(ngoal, openset[o]))
current = openset[c_id]
# show graph
if show_animation: # pragma: no cover
plt.plot(current.x * reso, current.y * reso, "xc")
if len(closedset.keys()) % 10 == 0:
plt.pause(0.001)
if current.x == ngoal.x and current.y == ngoal.y:
print("Find goal")
ngoal.pind = current.pind
ngoal.cost = current.cost
break
# Remove the item from the open set
del openset[c_id]
# Add it to the closed set
closedset[c_id] = current
# expand search grid based on motion model
for i, _ in enumerate(motion):
node = Node(current.x + motion[i][0],
current.y + motion[i][1],
current.cost + motion[i][2], c_id)
n_id = calc_index(node, xw, minx, miny)
if n_id in closedset:
continue
if not verify_node(node, obmap, minx, miny, maxx, maxy):
continue
if n_id not in openset:
openset[n_id] = node # Discover a new node
else:
if openset[n_id].cost >= node.cost:
# This path is the best until now. record it!
openset[n_id] = node
rx, ry = calc_final_path(ngoal, closedset, reso)
return rx, ry
def calc_heuristic(n1, n2):
w = 1.0 # weight of heuristic
d = w * math.sqrt((n1.x - n2.x)**2 + (n1.y - n2.y)**2)
return d
def verify_node(node, obmap, minx, miny, maxx, maxy):
if node.x < minx:
return False
elif node.y < miny:
return False
elif node.x >= maxx:
return False
elif node.y >= maxy:
return False
if obmap[node.x][node.y]:
return False
return True
def calc_obstacle_map(ox, oy, reso, vr):
minx = round(min(ox))
miny = round(min(oy))
maxx = round(max(ox))
maxy = round(max(oy))
# print("minx:", minx)
# print("miny:", miny)
# print("maxx:", maxx)
# print("maxy:", maxy)
xwidth = round(maxx - minx)
ywidth = round(maxy - miny)
# print("xwidth:", xwidth)
# print("ywidth:", ywidth)
# obstacle map generation
obmap = [[False for i in range(ywidth)] for i in range(xwidth)]
for ix in range(xwidth):
x = ix + minx
for iy in range(ywidth):
y = iy + miny
# print(x, y)
for iox, ioy in zip(ox, oy):
d = math.sqrt((iox - x)**2 + (ioy - y)**2)
if d <= vr / reso:
obmap[ix][iy] = True
break
return obmap, minx, miny, maxx, maxy, xwidth, ywidth
def calc_index(node, xwidth, xmin, ymin):
return (node.y - ymin) * xwidth + (node.x - xmin)
def get_motion_model():
# dx, dy, cost
motion = [[1, 0, 1],
[0, 1, 1],
[-1, 0, 1],
[0, -1, 1],
[-1, -1, math.sqrt(2)],
[-1, 1, math.sqrt(2)],
[1, -1, math.sqrt(2)],
[1, 1, math.sqrt(2)]]
return motion
def main():
print(__file__ + " start!!")
# start and goal position
sx = 10.0 # [m]
sy = 10.0 # [m]
gx = 50.0 # [m]
gy = 50.0 # [m]
grid_size = 1.0 # [m]
robot_size = 1.0 # [m]
ox, oy = [], []
for i in range(60):
ox.append(i)
oy.append(0.0)
for i in range(60):
ox.append(60.0)
oy.append(i)
for i in range(61):
ox.append(i)
oy.append(60.0)
for i in range(61):
ox.append(0.0)
oy.append(i)
for i in range(40):
ox.append(20.0)
oy.append(i)
for i in range(40):
ox.append(40.0)
oy.append(60.0 - i)
if show_animation: # pragma: no cover
plt.plot(ox, oy, ".k")
plt.plot(sx, sy, "xr")
plt.plot(gx, gy, "xb")
plt.grid(True)
plt.axis("equal")
rx, ry = a_star_planning(sx, sy, gx, gy, ox, oy, grid_size, robot_size)
if show_animation: # pragma: no cover
plt.plot(rx, ry, "-r")
plt.show()
if __name__ == '__main__':
main()
The comment just above those lines gives the clue:
# dx, dy, cost
The cost here apparently corresponds to the Euclidean distance, i.e. the square root of dx²+dy².
Each triplet represent one direction:
motion
could also have been defined as:
motion = [[
[dx, dy, math.sqrt(dx*dx+dy*dy)]
for dx in ([-1,0,1] if dy else [-1, 1])
] for dy in [-1,0,1]]
Note how this Euclidean distance formula also appears later in the code, e.g. for calculating the heuristic cost for the remainder of the path as the distance as-the-crow-flies between the current and target cell.
If you want to go for 3D, then you would have 4 values per direction: dx, dy, dz and the distance would be the square root of dx²+dy²+dz²: