Search code examples
apache-sparkapache-kafkahdfsrdddata-lake

How to create a data lake from Kafka to Hdfs with Spark - storing in custom directories?


I have an RDD transformed into a dataFrame of the following structure:

+-------------+--------------------+
|          key|               value|
+-------------+--------------------+
|1556110998000|{"eventId":"55108...|
|1556110998000|{"eventId":"558ac...|
|1556110998000|{"eventId":"553c0...|
|1556111001600|{"eventId":"56886...|
|1556111001600|{"eventId":"569ad...|
|1556111001600|{"eventId":"56b34...|
|1556110998000|{"eventId":"55d1b...|
...

Key is a timestamp rounded down to one hour, value is a json String.

What I want is to store the values into different buckets according to the timestamp. So basically I want the structure as follows:

...
/datalake/2019/03/31/03
/datalake/2019/03/31/04
/datalake/2019/03/31/05
...
/datalake/2019/04/25/08
/datalake/2019/04/25/09
...

Storing the actual rdd just with eventsRdd.saveAsTextFile("/datalake"); does not do the trick, as all events end up in one single file. Additionally this file is overwritten in the next "round".

So how would I go about this? I read some articales about partitioning but they didn't really help. I am actually thinking about switching to Kafka Connect and not using Spark at all for this.

Below is some code I tried to store the events (just on local fs for now)

private void saveToDatalake(JavaRDD<E> eventsRdd) {
        JavaPairRDD<Long, String> longEJavaPairRdd = eventsRdd
                .mapToPair(event -> new Tuple2<>(calculateRoundedDownTimestampFromSeconds(event.getTimestamp()), serialize(event)));

        SparkSession sparkSession = SparkSession.builder().appName("Build a DataFrame from Scratch").master("local[*]").getOrCreate();
        StructType dataFrameSchema = DataTypes
                .createStructType(new StructField[]
                        {DataTypes.createStructField("key", DataTypes.LongType, false),
                                DataTypes.createStructField("value", DataTypes.StringType, false),

                        });
        JavaRDD<Row> rowRdd = longEJavaPairRdd.map(pair -> RowFactory.create(pair._1, pair._2));

        Dataset<Row> dataFrame = sparkSession.sqlContext().createDataFrame(rowRdd, dataFrameSchema);

        Dataset<Row> buckets = dataFrame.select("key").dropDuplicates();
        //buckets.show();
        buckets.foreach(bucket -> {
            Dataset<Row> valuesPerBucket = dataFrame.where(dataFrame.col("key").equalTo(bucket)).select("value");
            //valuesPerBucket.show();
            long timestamp = bucket.getLong(0);
            valuesPerBucket.rdd().saveAsTextFile("/data/datalake/" + calculateSubpathFromTimestamp(timestamp));
        });

    }
private String calculateSubpathFromTimestamp(long timestamp) {
        String FORMAT = "yyyy/MM/dd/HH";
        ZoneId zone = ZoneId.systemDefault();
        DateTimeFormatter df = DateTimeFormatter.ofPattern(FORMAT).withZone(zone);
        String time = df.format(Instant.ofEpochMilli(timestamp));
        System.out.println("Formatted Date " + time);
        return time;
    }

Solution

  • We got it done by using Kafka Connect HDFS Connector and providing a custom Serializer class to convert Protobuf Messages from Kafka into JSON.