I am trying to model the variance in overall species richness with the habitat covariates of a camera trapping station using R2jags
. However, I keep getting the error:
"Error in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, :
RUNTIME ERROR:
Non-conforming parameters in function inprod"
I used a very similar function in my previous JAGS model (to find the species richness) so I am not sure why it is not working now...
I have already tried formatting the covariates within the inprod function in different ways, as a data frame and a matrix, to no avail.
Variable specification:
J=length(ustations) #number of camera stations
NSite=Global.Model$BUGSoutput$sims.list$Nsite
NS=apply(NSite,2,function(x)c(mean(x)))
###What I think is causing the problem:
COV <- data.frame(as.numeric(station.cov$NDVI), as.numeric(station.cov$TRI), as.numeric(station.cov$dist2edge), as.numeric(station.cov$dogs), as.numeric(station.cov$Leopard_captures))
###but I have also tried:
COV <- cbind(station.cov$NDVI, station.cov$TRI, station.cov$dist2edge, station.cov$dogs, station.cov$Leopard_captures)
JAGS model:
sink("Variance_model.txt")
cat("model {
# Priors
Y ~ dnorm(0,0.001) #Mean richness
X ~ dnorm(0,0.001) #Mean variance
for (a in 1:length(COV)){
U[a] ~ dnorm(0,0.001)} #Variance covariates
# Likelihood
for (i in 1:J) {
mu[i] <- Y #Hyper-parameter for station-specific all richness
NS[i] ~ dnorm(mu[i], tau[i]) #Likelihood
tau[i] <- (1/sigma2[i])
log(sigma2[i]) <- X + inprod(U,COV[i,])
}
}
", fill=TRUE)
sink()
var.data <- list(NS = NS,
COV = COV,
J=J)
Bundle data:
# Inits function
var.inits <- function(){list(
Y =rnorm(1),
X =rnorm(1),
U =rnorm(length(COV)))}
# Parameters to estimate
var.params <- c("Y","X","U")
# MCMC settings
nc <- 3
ni <-20000
nb <- 10000
nthin <- 10
Start Gibbs sampler:
jags(data=var.data,
inits=var.inits,
parameters.to.save=var.params,
model.file="Variance_model.txt",
n.chains=nc,n.iter=ni,n.burnin=nb,n.thin=nthin)
Ultimately, I get the error:
Compiling model graph
Resolving undeclared variables
Allocating nodes
Deleting model
Error in jags.model(model.file, data = data, inits = init.values, n.chains = n.chains, :
RUNTIME ERROR:
Non-conforming parameters in function inprod
In the end, I would like to calculate the mean and 95% credible interval (BCI) estimates of the habitat covariates hypothesized to influence the variance in station-specific (point-level) species richness.
Any help would be greatly appreciated!
It looks like you are using length
to generate the priors for U
. In JAGS
this function will return the number of elements in a node array. In this case, that would be the number of rows ins COV
multiplied by the number of columns.
Instead, I would supply a scalar to your data
list that you supply to jags.model
.
var.data <- list(NS = NS,
COV = COV,
J=J,
ncov = ncol(COV)
)
Following this, you can modify your JAGS
code where you are generating your priors for U
. The model would then become:
sink("Variance_model.txt")
cat("model {
# Priors
Y ~ dnorm(0,0.001) #Mean richness
X ~ dnorm(0,0.001) #Mean variance
for (a in 1:ncov){ # THIS IS THE ONLY LINE OF CODE THAT I MODIFIED
U[a] ~ dnorm(0,0.001)} #Variance covariates
# Likelihood
for (i in 1:J) {
mu[i] <- Y #Hyper-parameter for station-specific all richness
NS[i] ~ dnorm(mu[i], tau[i]) #Likelihood
tau[i] <- (1/sigma2[i])
log(sigma2[i]) <- X + inprod(U,COV[i,])
}
}
", fill=TRUE)
sink()