I have a questionnaire coded 1-5 and then labeled as (.) for missing variables. How do I code the data to reflect the following:
If patient has =>80% values not missing than missing values will be coded as the mean value of the questions answered. If patient is missing more than 80% of values than set measure summary to missing for patient, drop record.
condomuse;
set int108;
run;
proc means data=condomuse n nmiss missing;
var cusesability CUSESPurchase CUSESCarry CUSESDiscuss CUSESSuggest CUSESUse CUSESMaintain CUSESEmbarrass CUSESReject CUSESUnsure CUSESConfident CUSESComfort CUSESPersuade CUSESGrace CUSESSucceed;
by Intround sid;
run;
Using the following assumptions:
NMISS(), N(), CMISS() and DIM() are functions that can work with arrays.
This will identify all records with 80% or more missing.
data temp; *temp is output data set name;
set have; *have is input data set name;
*create an array to avoid listing all variables later;
array vars_check(*) cusesability CUSESPurchase CUSESCarry CUSESDiscuss CUSESSuggest CUSESUse CUSESMaintain CUSESEmbarrass CUSESReject CUSESUnsure CUSESConfident CUSESComfort CUSESPersuade CUSESGrace CUSESSucceed;
*calculate percent missing;
Percent_Missing = NMISS(of vars_check(*)) / Dim(vars_check);
if percent_missing >= 0.8 then exclude = 'Y';
else exclude = 'N';
run;
To replace with mean or a different method, PROC STDIZE can do that.
*temp is input data set name from previous step;
proc stdize data=temp out=temp_mean reponly method=mean;
*keep only records with more than 80%;
where exclude = 'N';
*list of vars to fill with mean;
VAR cusesability CUSESPurchase CUSESCarry CUSESDiscuss CUSESSuggest CUSESUse CUSESMaintain CUSESEmbarrass CUSESReject CUSESUnsure CUSESConfident CUSESComfort CUSESPersuade CUSESGrace CUSESSucceed;
run;
The different methods for standardization are here, but these are standardization methods not imputation methods.