I have a problem with a static variable within a class. I'm trying to edit a static variable of a child class without editing the others childs class static variable.
The header file :
class A {
public:
A() {}
void printName() {qDebug() << _name; }
void changeName(QString name) {_name = name;}
private:
static QString _name;
};
QString A::_name = QString("default");
class B : public A {
public:
B() : A() {}
};
class C : public A {
public:
C() : A() {}
};
I'm trying to edit the static _name of my class B without editing the _name of my class C. When I try this code in this main.cpp :
int main(int argc, char *argv[])
{
A *a = new B{};
A *b = new B{};
A *c = new C{};
a->printName();
b->printName();
c->printName();
B *tmp = dynamic_cast<B*>(a);
tmp->changeName("new");
qDebug() << "Then";
a->printName();
b->printName();
c->printName();
}
Here's what I have :
"default"
"default"
"default"
Then
"new"
"new"
"new"
Anyone has any idea on how I could fix this ?
Here's what I've also try :
class A {
public:
A() {}
virtual ~A() {}
void printName() {qDebug() << _name; }
virtual void changeName(QString name) {_name = name;}
private:
static QString _name;
};
QString A::_name = QString("default");
class B : public A {
public:
B() : A() {}
void changeName(QString name) override {_name = name;}
private:
static QString _name;
};
class C : public A {
public:
C() : A() {}
void changeName(QString name) override {_name = name;}
private:
static QString _name;
};
There is only one A::_name
, it can only have one value at any given time. Since all your derived types uses the same static
member they necessarily all have the same _name
value. To fix this, each derived type must provide it's own static
member instead.
To avoid repeating the same members in every derived type, you can define them in a templated intermediate class that sits between A
and the derived types B
and C
. Each template specialization has it's own static
member. So, provided each derived type supplies a unique value to the intermediate type's template argument, they will have their own names. For example, split A
into two classes :
#include <iostream>
#include <string>
class A {
public:
virtual void printName() = 0;
virtual void changeName(std::string name) = 0;
};
template<class T>
class A_impl : public A
{
public:
void printName() override {
std::cout << _name << '\n';
};
void changeName(std::string name) override {
_name = std::move(name);
};
private:
static std::string _name;
};
template<class T>
std::string A_impl<T>::_name = "default";
Then each derived type should inherit from A_impl
instead of A
. By providing their own type to A_impl
, you can be sure each derived type provides a unique template argument :
class B : public A_impl<B> { };
class C : public A_impl<C> { };
Now your test should print
default
default
default
Then
new
new
default