I'm used to pass lambda functions (and other callables) to template functions -- and use them -- as follows
template <typename F>
auto foo (F && f)
{
// ...
auto x = std::forward<F>(f)(/* some arguments */);
// ...
}
I mean: I'm used to pass them through a forwarding reference and call them passing through std::forward
.
Another Stack Overflow user argue (see comments to this answer) that this, calling the functional two or more time, it's dangerous because it's semantically invalid and potentially dangerous (and maybe also Undefined Behavior) when the function is called with a r-value reference.
I've partially misunderstand what he means (my fault) but the remaining doubt is if the following bar()
function (with an indubitable multiple std::forward
over the same object) it's correct code or it's (maybe only potentially) dangerous.
template <typename F>
auto bar (F && f)
{
using A = typename decltype(std::function{std::forward<F>(f)})::result_type;
std::vector<A> vect;
for ( auto i { 0u }; i < 10u ; ++i )
vect.push_back(std::forward<F>(f)());
return vect;
}
I'd say the general rule applies in this case. You're not supposed to do anything with a variable after it was moved/forwarded from, except maybe assigning to it.
Thus...
How do correctly use a callable passed through forwarding reference?
Only forward if you're sure it won't be called again (i.e. on last call, if at all).
If it's never called more than once, there is no reason to not forward.
As for why your snippet could be dangerous, consider following functor:
template <typename T>
struct foo
{
T value;
const T &operator()() const & {return value;}
T &&operator()() && {return std::move(value);}
};
As an optimization, operator()
when called on an rvalue allows caller to move from value
.
Now, your template wouldn't compile if given this functor (because, as T.C. said, std::function
wouldn't be able to determine return type in this case).
But if we changed it a bit:
template <typename A, typename F>
auto bar (F && f)
{
std::vector<A> vect;
for ( auto i { 0u }; i < 10u ; ++i )
vect.push_back(std::forward<F>(f)());
return vect;
}
then it would break spectacularly when given this functor.