Search code examples
pythonopencvmazestereo-3d

Path detection and progress in the maze with live stereo3d image


I'm producing an ugv prototype. The goal is to perform the desired actions to the targets set within the maze. When I surf the Internet, the mere right to navigate in the labyrinth is usually made with a distance sensor. I want to consult more ideas than the question.

I want to navigate the labyrinth by analyzing the image from the 3d stereo camera. Is there a resource or successful method you can suggest for this? As a secondary problem, the car must start in front of the entrance of the labyrinth, see the entrance and go in, and then leave the labyrinth after it completes operations in the labyrinth.

I would be glad if you suggest a source for this problem. :)


Solution

  • The problem description is a bit vague, but i'll try to highlight some general ideas.

    An useful assumption is that labyrinth is a 2D environment which you want to explore. You need to know, at every moment, which part of the map has been explored, which part of the map still needs exploring, and which part of the map is accessible in any way (in other words, where are the walls).

    An easy initial data structure to help with this is a simple matrix, where each cell represents a square in the real world. Each cell can be then labelled according to its state, starting in an unexplored state. Then you start moving, and exploring. Based on the distances reported by the camera, you can estimate the state of each cell. The exploration can be guided by something such as A* or Q-learning.

    Now, a rather subtle issue is that you will have to deal with uncertainty and noise. Sometimes you can ignore it, sometimes you don't. The finer the resolution you need, the bigger is the issue. A probabilistic framework is most likely the best solution.

    There is an entire field of research of the so-called SLAM algorithms. SLAM stands for simultaneous localization and mapping. They build a map using some sort of input from various types of cameras or sensors, and they build a map. While building the map, they also solve the localization problem within the map. The algorithms are usually designed for 3d environments, and are more demanding than the simpler solution indicated above, but you can find ready to use implementations. For exploration, something like Q-learning still have to be used.