So i'm using this tutorial to create my own custom estimator and I can't get the tensorboard to draw both validation accuracy during the training process. This issue on Github perfectly describes my problem. As someone mentioned in the last comment by setting save_checkpoints_steps
to a small value, the model should do evaluation at each step, However that's not the case for me. after I run:
classifier = tf.estimator.Estimator(
model_fn=my_model,
params={
'n_classes': 4,
},
model_dir=model_dir_str,
config=tf.estimator.RunConfig(save_checkpoints_steps=int(1)))
loss_hook = early_stopping.stop_if_lower_hook(classifier, "loss", 0.2, model_dir_str + 'loss_eval')
acc_hook = early_stopping.stop_if_no_increase_hook(classifier, "accuracy", 100, model_dir_str + 'acc_eval')
train_spec = tf.estimator.TrainSpec(input_fn=input_train_fn, max_steps=steps, hooks=[loss_hook, acc_hook])
eval_spec = tf.estimator.EvalSpec(input_fn=input_eval_fn, steps=1000)
results = tf.estimator.train_and_evaluate(classifier, train_spec, eval_spec)
I only get two points in the plot. I have experimented with different values for and I still get the same results.
Since no one has came up with an answer, I'm posting this messy work-around for the time being.
loss_hook = early_stopping.stop_if_lower_hook(classifier, "loss", 0.2, 'loss_eval')
acc_hook = early_stopping.stop_if_no_increase_hook(classifier, "accuracy", 100, 'acc_eval')
tf.logging.set_verbosity(False)
for i in range(int(steps/10)):
print(i)
classifier.train(
input_fn=input_train_fn,
steps=10,
hooks=[loss_hook, acc_hook])
# Evaluate the model.
eval_result = classifier.evaluate(input_fn=input_eval_fn, steps=5)
print(eval_result)
Basically you run the training for a small number of steps and then do one evaluation.