So I have the following layout:
The objective is to collect all the yellow blocks by moving the white ball around. I'm trying to come up with an algorithm that will calculate an efficient path however I'm not too sure where to start.
Initially I thought about path finding algorithms like Djikstra and A* but they don't seem to fit with my goal. I've also thought about hamiltonian paths which is closer to what I want but still doesn't seem to solve the problem.
Any suggestions on what sort of algorithm can be used would be appreciated.
Your problem has a classic name in the litterature, it is the minimum hamiltonian walk problem. Beware not to mistake it with the minimum hamiltonian path problem, its 'cousin', because it is much more famous, and much, much harder (finding a hamiltonian walk can be done in polynomial time, finding a hamiltonian path is NP-complete). The traveling salesman problem is the other name of the minimum hamiltonian path problem (path, not walk).
There are very few ressources on this problem, but nevertheless you can have a look at an article called 'An algorithm for finding a short closed spanning walk in a graph' by Takamizawa, Nishizeki and Saito from 1980. They provide a polynomial algorithm to find such a path.
If the paper is a bit hard to read, or the algorithm too complex to implement, then I'll suggest that you go for the christofides algorithm, because it runs in polynomial time, and is somehow efficient (it is a 2-approximation if I remember well).
Another possible approach would be to go for a greedy algorithm, like a nearest unvisited neigbor algorithm (start somewhere, go to the nearest node that is not in the walk yet, repeat until everyone is in the walk).
Acutally, I think the easiest and maybe best simple solution is to go greedy.