Finding the Lexicographically minimal string rotation is a well known problem, for which a linear time algorithm was proposed by Jean Pierre Duval in 1983. This blog post is probably the only publicly available resource that talks about the algorithm in detail. However, Duval's algorithms is based on the idea of pairwise comparisons ("duels"), and the blog conveniently uses an even-length string as an example.
How does the algorithm work for odd-length strings, where the last character wouldn't have a competing one to duel with?
One character can get a "bye", where it wins without participating in a "duel". The correctness of the algorithm does not rely on the specific duels that you perform; given any two distinct indices i and j, you can always conclusively rule out that one of them is the start-index of the lexicographically-minimal rotation (unless both are start-indices of identical lexicographically-minimal rotations, in which case it doesn't matter which one you reject). The reason to perform the duels in a specific order is performance: to get asymptotically linear time by ensuring that half the duels only need to compare one character, half of the rest only need to compare two characters, and so on, until the last duel only needs to compare half the length of the string. But a single odd character here and there doesn't change the asymptotic complexity, it just makes the math (and implementation) a little bit more complicated. A string of length 2n+1 still requires fewer "duels" than one of length 2n+1.