Let's say we have this sample data.
| mem_id | main_title | sub_title |
-----------------------------------
| 1 | 1 | 1 |
| 10 | 3 | 2 |
| 3 | 3 | 2 |
| 45 | 1 | 2 |
| 162 | 2 | 2 |
...
1) summary of data
possible to have repetition like one mem_id can have multiple case of (1 : main , 1 : sub)
2) question
I'd like to make R table function result in python.
R table function result is like this. I can make every possible combination from all main_title and sub_title. Also can get the count from each case by mem_id.
count.data <- table(data$mem_id, data$main_title, data$sub_title)
count.table <- as.data.frame(count.data)
===============================================
mem_id main_title sub_title value
1 1 1 1 0
2 2 1 1 0
3 3 1 1 0
4 4 1 1 0
5 5 1 1 0
6 6 1 1 0
7 7 1 1 0
.
.
.
I've tried to get this result in Python and the result below is what i got so far.
cross_table1 = pd.melt(data, id_vars=['main_title ', 'sub_title'], value_vars='mem_id', value_name='mem_id')
==================================================
main_title sub_title variable mem_id
1 1 1 mem_id 10
2 1 1 mem_id 10
3 3 1 mem_id 10
4 4 2 mem_id 10
5 1 4 mem_id 132
6 4 1 mem_id 65
7 4 3 mem_id 88
.
.
.
cross_table2 = cross_table1.pivot_table(index=['main_title ', 'sub_title', 'mem_id'], values='variable', aggfunc='count')
cross_table32.reset_index().sort_values('value')
==============================================
main_title sub_title mem_id value
1 1 1 1 4
2 1 1 2 3
3 3 1 3 1
4 4 2 3 10
5 1 4 3 2
6 1 1 4 5
7 3 2 5 2
.
.
.
I recognize this only show the positive result of value(count of case) column.
What i need is to include all possible combination of main_title and sub_title, so like 1&1(main&sub) case has to have 200 rows with possible zero value in count column.
It would be so grateful if I can get any help or advice!! Thanks :)
In pandas you can do with groupby
+ reindex
s=df.groupby(df.columns.tolist()).size()
idx=pd.MultiIndex.from_product(list(map(set,df.values.T)))
s=s.reindex(idx,fill_value=0)
s
Out[15]:
162 1 1 0
2 0
2 1 0
2 1
3 1 0
2 0
1 1 1 1
2 0
2 1 0
2 0
3 1 0
2 0
10 1 1 0
2 0
2 1 0
2 0
3 1 0
2 1
3 1 1 0
2 0
2 1 0
2 0
3 1 0
2 1
45 1 1 0
2 1
2 1 0
2 0
3 1 0
2 0
dtype: int64