Search code examples
pythonpython-3.xpandasdcast

how to dcast in pandas with more than one columns for columns argument


I have the following dataframe

import pandas as pd
df = pd.DataFrame({'id':[1,2,3,4,5,6], 'id_2':[6,5,4,3,2,1],
'col_1':['A','A','A','B','B','B'],
'col_2':['X','Z','X','Z','X','Z'],
'value':[10,20,30,40,50,60]})

And I want to dcast it, so I use

df= df.pivot_table(index=['id','id_2'], columns=['col_1', 'col_2'],aggfunc=lambda x: x)

I do not know how droplevel and change the df.columns into A_X,A_Z,B_X,B_Z. The multi-index confuses me

Any ideas ?

UPDATE

I would like to end up with

import numpy as np

df=pd.DataFrame({'id':[1,2,3,4,5,6], 'id_2':[6,5,4,3,2,1],
'A_X':[10,np.nan,30,np.nan,np.nan,np.nan],
'A_Z':[np.nan,20,np.nan,np.nan,np.nan,np.nan],
'B_X':[np.nan,np.nan,np.nan,np.nan,50,np.nan],
'B_Z':[np.nan,np.nan,np.nan,40,np.nan,60]})

Solution

  • You need remove top level value from Multiindex - by Index.droplevel or with list comprehension:

    print (df.columns)
    MultiIndex(levels=[['value'], ['A', 'B'], ['X', 'Z']],
               codes=[[0, 0, 0, 0], [0, 0, 1, 1], [0, 1, 0, 1]],
               names=[None, 'col_1', 'col_2'])
    
    df.columns = df.columns.droplevel(0).map('_'.join)
    

    Or:

    df.columns = [f'{b}_{c}' for a,b,c in df.columns]
    

    df = df.reset_index()
    print (df)
    
       id  id_2   A_X   A_Z   B_X   B_Z
    0   1     6  10.0   NaN   NaN   NaN
    1   2     5   NaN  20.0   NaN   NaN
    2   3     4  30.0   NaN   NaN   NaN
    3   4     3   NaN   NaN   NaN  40.0
    4   5     2   NaN   NaN  50.0   NaN
    5   6     1   NaN   NaN   NaN  60.0
    

    Another solution is specify value parameter in pivot_table:

    df= df.pivot_table(index=['id','id_2'], columns=['col_1', 'col_2'], values='value')
    
    print (df.columns)
    MultiIndex(levels=[['A', 'B'], ['X', 'Z']],
               codes=[[0, 0, 1, 1], [0, 1, 0, 1]],
               names=['col_1', 'col_2'])
    
    df.columns = df.columns.map('_'.join)
    df = df.reset_index()
    print (df)
    
       id  id_2   A_X   A_Z   B_X   B_Z
    0   1     6  10.0   NaN   NaN   NaN
    1   2     5   NaN  20.0   NaN   NaN
    2   3     4  30.0   NaN   NaN   NaN
    3   4     3   NaN   NaN   NaN  40.0
    4   5     2   NaN   NaN  50.0   NaN
    5   6     1   NaN   NaN   NaN  60.0