I have data which look something like this
co_code company_name co_stkdate dailylogreturn
1 A 01-01-2000 0.76
1 A 02-01-2000 0.75
.
.
.
1 A 31-12-2019 0.54
2 B 01-01-2000 0.98
2 B 02-01-2000 0.45
. . And so on
I want to find weekly returns which is equal to sum of daily log return for one week.
output should look something like this
co_code company_name co_stkdate weeklyreturns
1 A 07-01-2000 1.34
1 A 14-01-2000 0.95
.
.
.
1 A 31-12-2019 0.54
2 B 07-01-2000 0.98
2 B 14-01-2000 0.45
I tried to apply functions in quantmod package but those functions are applicable to only xts objects. Another issue in xts objects is that function "group_by()" can't be used. Thus, I want to work in usual dataframe only.
Code look something like this
library(dplyr)
### Reading txt file
df <- read.csv("33339_1_120_20190405_165913_dat.csv")
df <- mutate(df, "dailylogrtn"=log(nse_returns)) %>% as.data.frame()
df$co_stkdate<- as.Date(as.character(df$co_stkdate), format="%d-%m-%Y")
Since we don't know how many days of every week you got a dailylogreturn
, there might be NAs, I recommend grouping by week and year:
#sample data
df <- data.frame(co_stkdate = rep(seq.Date(from = as.Date("2000-01-07"), to = as.Date("2000-02-07"), by = 1), 2),
dailylogreturn = abs(round(rnorm(64, 1, 1), 2)),
company_name = rep(c("A", "B"), each = 32))
df %>%
mutate(co_stkdate = as.POSIXct(co_stkdate),
year = strftime(co_stkdate, "%W"),
week = strftime(co_stkdate, "%Y")) %>%
group_by(company_name, year, week) %>%
summarise(weeklyreturns = sum(dailylogreturn, na.rm = TRUE))
# A tibble: 12 x 4
# Groups: company_name, year [12]
company_name year week weeklyreturns
<fct> <chr> <chr> <dbl>
1 A 01 2000 6.31
2 A 02 2000 6.11
3 A 03 2000 6.02
4 A 04 2000 8.27
5 A 05 2000 4.92
6 A 06 2000 0.5
7 B 01 2000 1.82
8 B 02 2000 6.6
9 B 03 2000 7.55
10 B 04 2000 7.63
11 B 05 2000 7.54
12 B 06 2000 1.03