I'm following Adrian Rosebrock's tutorial on recognising digits on an RPi, so no tesseract or whatever: https://www.pyimagesearch.com/2017/02/13/recognizing-digits-with-opencv-and-python/
But it doesn't recognise decimal points, so I've been trying really hard to create a part that would help to do that. I think I've gotten close, but I'm not sure what I've done wrong.
This is my image after preprocessing
and this is what happens after the attempted recognising part
As you can see, I'm doing something wrong somewhere. Already tried tuning param1 and param2 in the houghCircles
More examples:
Can anyone guide me on what I should do? I'm really lost here
================================================================
The code I'm using
from imutils.perspective import four_point_transform
from imutils import contours
import imutils
import cv2
import numpy
DIGITS_LOOKUP = {
# Old Library
#(1, 1, 1, 0, 1, 1, 1): 0, # same as new 8
(0, 0, 1, 0, 0, 1, 0): 1,
(1, 0, 1, 1, 1, 1, 0): 2,
(1, 0, 1, 1, 0, 1, 1): 3,
(0, 1, 1, 1, 0, 1, 0): 4,
(1, 1, 0, 1, 0, 1, 1): 5,
#(1, 1, 0, 1, 1, 1, 1): 6,
(1, 0, 1, 0, 0, 1, 0): 7,
(1, 1, 1, 1, 1, 1, 1): 8,
(1, 1, 1, 1, 0, 1, 1): 9,
# New Digital Library
(0, 0, 1, 1, 1, 0, 1): 0,
(1, 0, 1, 0, 0, 1, 1): 2,
(0, 0, 1, 1, 0, 1, 1): 4,
(0, 0, 0, 0, 0, 1, 1): 4,
(1, 1, 0, 0, 0, 1, 1): 5,
(1, 1, 0, 1, 1, 0, 1): 5,
(1, 0, 0, 0, 0, 1, 1): 5,
(1, 1, 1, 0, 0, 0, 0): 7,
(1, 1, 0, 1, 1, 1, 1): 8,
(1, 1, 1, 0, 1, 1, 1): 8
}
image = cv2.imread("10.jpg")
image = imutils.resize(image, height=100)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 120, 255, 1)
cv2.imshow("1", edged)
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
displayCnt = approx
break
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
output = four_point_transform(image, displayCnt.reshape(4, 2))
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("2", thresh)
print(thresh.shape)
circles = cv2.HoughCircles(warped, cv2.HOUGH_GRADIENT, 7, 14, param1=0.1, param2=20, minRadius=3, maxRadius=7)
# ensure at least some circles were found
if circles is not None:
circles = numpy.round(circles[0, :]).astype("int")
for (x, y, r) in circles:
cv2.circle(output, (x, y), r, (0, 255, 0), 4)
cv2.rectangle(output, (x - 5, y - 5), (x + 5, y + 5), (0, 128, 255), -1)
# show the output image
cv2.imshow("test", output)
cv2.waitKey(0)
Since the decimal may be a square instead of a circle, using cv2.HoughCircles()
may not be the best option. Additionally, since you may have background noise, trying to find connected components may give you false positive results.
Here's a method to detect the decimal using cv2.boundingRect()
and cv2.contourArea()
. We could set threshold min and max areas so it will only detect the decimal but also avoid detecting noise.
Attempting to detect on images
from imutils.perspective import four_point_transform
from imutils import contours
import imutils
import cv2
import numpy
DIGITS_LOOKUP = {
(1, 1, 1, 0, 1, 1, 1): 0,
(0, 0, 1, 0, 0, 1, 0): 1,
(1, 0, 1, 1, 1, 1, 0): 2,
(1, 0, 1, 1, 0, 1, 1): 3,
(0, 1, 1, 1, 0, 1, 0): 4,
(1, 1, 0, 1, 0, 1, 1): 5,
(1, 1, 0, 1, 1, 1, 1): 6,
(1, 0, 1, 0, 0, 1, 0): 7,
(1, 1, 1, 1, 1, 1, 1): 8,
(1, 1, 1, 1, 0, 1, 1): 9
}
image = cv2.imread("10.jpg")
image = imutils.resize(image, height=100)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 120, 255, 1)
cv2.imshow("1", edged)
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
for c in cnts:
peri = cv2.arcLength(c, True)
approx = cv2.approxPolyDP(c, 0.02 * peri, True)
if len(approx) == 4:
displayCnt = approx
break
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
thresh = cv2.threshold(warped, 0, 255,
cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
cv2.imshow("2", thresh)
digit_cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
digit_cnts = imutils.grab_contours(digit_cnts)
threshold_max_area = 25
threshold_min_area = 5
contour_image = thresh.copy()
for c in digit_cnts:
(x,y,w,h) = cv2.boundingRect(c)
area = cv2.contourArea(c)
if area < threshold_max_area and area > threshold_min_area:
cv2.drawContours(contour_image,[c], 0, (100,5,10), 3)
cv2.imshow("detect decimal", contour_image)
cv2.waitKey(0)