I am trying to create TFRecords from a custom video dataset and I am having problems fully understanding how to set them up.
In order to prep my data for storage, I wrote a script that for a given video feed, outputs a 3D cube of shape [N_FRAMES, WIDTH, HEIGHT, CHANNEL]
. Thereafter I create a tfrecord as follows:
def _int64_feature(self, value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
def _bytes_feature(self, value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def createDataRecord(self, file_name, locations, categories):
writer = tf.python_io.TFRecordWriter(file_name)
feature = {}
for loc, category in zip(locations, categories):
data = self.3DVideo(loc) # the final array of shape [N_FRAMES, WIDTH, HEIGHT, CHANNEL]
feature['height'] = self._int64_feature(self.height)
feature['width'] = self._int64_feature(self.width)
feature['depth'] = self._int64_feature(self.depth)
feature['data'] = self._bytes_feature(data.tostring())
feature['category'] = self._int64_feature(category)
example = tf.train.Example(features=tf.train.Features(feature=feature))
writer.write(example.SerializeToString())
writer.close()
Then my current parser function looks like this
def readDataRecord(self, record):
filename_queue = tf.train.string_input_producer([record], num_epochs=1)
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
feature =
{'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'data': tf.FixedLenFeature([], tf.string),
'category': tf.FixedLenFeature([], tf.int64),
}
example = tf.parse_single_example(serialized_example, features=feature)
video3D_buffer = tf.reshape(example['data'], shape=[])
video3D = tf.decode_raw(video3D_buffer, tf.uint8)
label = tf.cast(example['category'], tf.int32)
return video3D, label
With that being said, my questions are:
I know that readDataRecord()
is wrong since its working on individual frames. How exactly do I get it to return individual 3D cubes of shape [N_FRAMES, WIDTH, HEIGHT, CHANNEL]
along with their respective category?
Is this even a good idea to simply save the entire 3D cube?
Any help or guidance will be greatly appreciated :)
PS: I have looked into other methods including video2tfrecord but most of them seem to be saving individual frames for each video and I don't want that.
So this what I ended up doing to achieve this without having to encode individual frames.
I ended up flattening the cube then writing that out instead as shown below:
def _cube_feature(self, value):
return tf.train.Feature(float_list=tf.train.FloatList(value=value))
def createDataRecord(self, name, locations, categories):
writer = tf.python_io.TFRecordWriter(name)
feature = {}
for loc, category in zip(locations, categories):
data = self.3DVideo(loc)
.............
feature['data'] = self._cube_feature(data.flatten())
feature['category'] = self._int64_feature(category)
example = tf.train.Example(features=tf.train.Features(feature=feature))
writer.write(example.SerializeToString())
writer.close()
The resulting parser is:
def readDataRecord(self, record):
..........
feature = \
{'height': tf.FixedLenFeature([], tf.int64),
'width': tf.FixedLenFeature([], tf.int64),
'depth': tf.FixedLenFeature([], tf.int64),
'data': tf.FixedLenFeature((NUM_FRAMES, WIDTH, HEIGHT, CHANNEL), tf.float32),
'category': tf.FixedLenFeature([], tf.int64),
}
example = tf.parse_single_example(serialized_example, features=feature)
cube = tf.cast(example['data'], tf.uint8)
label = tf.cast(example['category'], tf.int32)
return cube, label