Search code examples
pythonpython-3.xnumpycovarianceiris-dataset

How to use cov function to a dataset iris python


I want to get the covariance from the iris data set, https://www.kaggle.com/jchen2186/machine-learning-with-iris-dataset/data

I am using numpy, and the function -> np.cov(iris)

with open("Iris.csv") as iris:
    reader = csv.reader(iris)
    data = []
    next(reader)
    for row in reader:
        data.append(row)

for i in data:
    i.pop(0)
    i.pop(4)

iris = np.array(data)
np.cov(iris)

And I get this error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-4-bfb836354075> in <module>
----> 1 np.cov(iris)

D:\Anaconda\lib\site-packages\numpy\lib\function_base.py in cov(m, y, rowvar, bias, ddof, fweights, aweights)
   2300             w *= aweights
   2301 
-> 2302     avg, w_sum = average(X, axis=1, weights=w, returned=True)
   2303     w_sum = w_sum[0]
   2304 

D:\Anaconda\lib\site-packages\numpy\lib\function_base.py in average(a, axis, weights, returned)
    354 
    355     if weights is None:
--> 356         avg = a.mean(axis)
    357         scl = avg.dtype.type(a.size/avg.size)
    358     else:

D:\Anaconda\lib\site-packages\numpy\core\_methods.py in _mean(a, axis, dtype, out, keepdims)
     73             is_float16_result = True
     74 
---> 75     ret = umr_sum(arr, axis, dtype, out, keepdims)
     76     if isinstance(ret, mu.ndarray):
     77         ret = um.true_divide(

TypeError: cannot perform reduce with flexible type

I don't understand what it means..


Solution

  • So, if you want to modify your code you could try by reading the Iris.csv with pandas.read_csv function. And then select the appropiate columns of your choice.

    BUT, here is a little set of commands to ease up this task. They use scikit-learn and numpy to load the iris dataset obtain X and y and obtain covariance matrix:

    from sklearn.datasets import load_iris
    import numpy as np
    
    data = load_iris()
    X = data['data']
    y = data['target']
    
    np.cov(X)
    

    Hope this has helped.