Please, help to define appropriate Dense
input shapes in keras models. Maybe I have to reshape my data first. I have data set with dimensions shown below:
Data shapes are X_train: (2858, 2037) y_train: (2858, 1) X_test: (715, 2037) y_test: (715, 1)
Number of features (input shape) is 2037
I want to define Sequential keras model like that
``
batch_size = 128
num_classes = 2
epochs = 20
model = Sequential()
model.add(Dense(512, activation='relu', input_shape=(X_input_shape,)))
model.add(Dropout(0.2))
model.add(Dense(512, activation='relu'))
model.summary()
model.compile(loss='binary_crossentropy',
optimizer=RMSprop(),
from_logits=True,
metrics=['accuracy'])
``
Model summary:
``
Layer (type) Output Shape Param #
=================================================================
dense_20 (Dense) (None, 512) 1043456
_________________________________________________________________
dropout_12 (Dropout) (None, 512) 0
_________________________________________________________________
dense_21 (Dense) (None, 512) 262656
=================================================================
Total params: 1,306,112
Trainable params: 1,306,112
Non-trainable params: 0
``
And when I try to fit it...
``
history = model.fit(X_train, y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test, y_test))
`` I got an error:
``
ValueError: Error when checking target: expected dense_21 to have shape (512,) but got array with shape (1,)
``
Modify
model.add(Dense(512, activation='relu'))
to
model.add(Dense(1, activation='relu'))
The output shape to be of size 1, same as y_train.shape[1].