Just a (somewhat) quick question - if I have a dataframe with a column consisting of numbers of the form 1.305.000, 4.65, 99.9, 443.111.34000
, how can I convert them to the 'correct' format: 1305.000, 4.65, 99.9, 443111.34000
?
If it helps, the the values were obtained from a .csv
file, from one of its columns, say 'Total Net Revenue':
In code block form:
Day Service Total Net Revenue
0 1 te 1.305.000
1 1 as 4.65
2 2 qw 99.9
3 3 al 443.111.34000
4 6 al 443.111.34000
5 6 te 1.305.000
6 7 pp 200
7 7 te 1.305.000
8 7 al 443.111.34000
9 7 te 1.305.000
And another form based on feedback:
[{'Day': 1, 'Service': 'te', 'Total Net Revenue': '1.305.000'},
{'Day': 1, 'Service': 'as', 'Total Net Revenue': '4.65'},
{'Day': 2, 'Service': 'qw', 'Total Net Revenue': '99.9'},
{'Day': 3, 'Service': 'al', 'Total Net Revenue': '443.111.34000'},
{'Day': 6, 'Service': 'al', 'Total Net Revenue': '443.111.34000'},
{'Day': 6, 'Service': 'te', 'Total Net Revenue': '1.305.000'},
{'Day': 7, 'Service': 'pp', 'Total Net Revenue': '200'},
{'Day': 7, 'Service': 'te', 'Total Net Revenue': '1.305.000'},
{'Day': 7, 'Service': 'al', 'Total Net Revenue': '443.111.34000'},
{'Day': 7, 'Service': 'te', 'Total Net Revenue': '1.305.000'}]
I can't seem to find any reference on this, and some insight will be deeply appreciated. Thanks!
This isn't quite a pandas question, it's really asking about turning odd-looking strings into numbers (tag: number-formatting).
The following function will turn those strings into the desired numbers:
import unittest
def cleanup(s: str) -> float:
parts = s.split('.')
if len(parts) > 1:
s = ''.join(parts[:-1]) + '.' + parts[-1]
return float(s)
class TestCleanup(unittest.TestCase):
def test_cleanup(self):
self.assertEqual(200, cleanup('200'))
self.assertEqual(4.65, cleanup('4.65'))
self.assertEqual(1305, cleanup('1.305.000'))
self.assertEqual(443111.34, cleanup('443.111.34000'))
You might consider using Decimal
if those are currency figures, which motivates a "scaled integer" approach.
It's a simple matter to .apply()
the cleanup()
function to an existing dataframe:
df['numeric_revenue'] = df['total_net_revenue'].apply(cleanup)