Search code examples
pythonpandasloopsdataframefinance

Looping over DataFrame to save manually repeating task


I have done the following tasks manually and I am sure there is a way to write a loop, but I am not sure how to do so in Python.

Data looks like this:

df

                   a   b   c   market   ret
date        id                           
2015-01-01  1     10   4   2     10     0.02
2015-01-01  2     20   3   5     15     0.03
2015-01-01  3     30   2   3     20     0.05 
2015-01-01  4     40   1   10    25     0.01
2015-01-02  1     15   8   4     15    -0.03
2015-01-02  2     10   6   1     10     0.02
2015-01-02  3     25  10   2     22     0.06
2015-01-02  4     30   3   7     26     0.06
2015-01-03  1     25   2   2     16    -0.07
2015-01-03  2     10   6   1     18     0.01
2015-01-03  3     5    8   5     26     0.04
2015-01-03  4     30   1   6     21    -0.05

I do the following:

dfa = df

dfa['market'] = dfa.groupby(level = ['id']).market.shift()

dfa['port'] = dfa.groupby(['date'])['a'].transform(lambda x: pd.qcut(x, 4, labels = False))

# value-weighted portoflio returns
dfa = dfa.set_index(['port'], append = True)
dfa['tmktcap'] = dfa.groupby(['date','port'])['mktcap'].transform(sum)
dfa['w_ret'] = (dfa.mktcap / dfa.tmktcap) * dfa.ret

#reshape long to wide
dfa = dfa.groupby(['date', 'port'])['w_ret'].sum().shift(-4)
dfa = dfa['2006-01-01':].rename('a')
dfa = dfa.unstack()
dfa[4.0] = dfa[3.0] - dfroe[0.0] 
dfa = dfa.stack().reset_index().set_index(['date'])
dfa['port'] = dfa['port'].map({0.0:'a0',1.0:'a1',2.0:'a2',3.0:'a3',4.0:'aL-S'})
dfa = dfa.reset_index().set_index(['date', 'port']).unstack()

But then I repeat this task for b and c.

So I start of by setting dfb = df and just change the a to b and follow this process when doing this for c.

I have had to do this for variables going from a to h in total (just some example data used here), so any help with writing a loop would be amazing!!!!!


Solution

  • Loop over a selection of columns. Then save your results in an array, list or dictionary. Here is an example whit a list.

    results = [] # this list will store your results
    columns_to_process = ['a', 'b','c','d','f']
    
    for col in columns_to_process:
        data = df.copy()
        data['market'] = data.groupby(level = ['id']).market.shift()
        data['port'] = data.groupby(['date'])[col].transform(lambda x: pd.qcut(x, 4, labels = False))
    
        # do whatever you want with data
    
        results.append(data) # this store the result in position 0 then 1 then 2 etc
    
    #then use your result:
    
    result[0] # for the dfa
    result[1] # for dfb etc
    

    Or, you may want to store all results in one DataFrame. To do that you just select the columns you want and save it in a DataFrame.

    df['result_a'] = data.columns_i_want_to_save
    

    You asked:

    #Do I just change a to col where I change name of the column?
    dfa['port'].map({0.0:'a0',1.0:'a1',2.0:'a2',3.0:'a3',4.0:'aL-S'})
    

    You can do some 'string addition'. Somethings like:

        dfa['port'].map({0.0:col+'0',
                         1.0:col+'1',
                         2.0:col+'2',
                         3.0:col+'3',
                         4.0:col+'L-S'})