Search code examples
roptimizationcvxmosekcvxr

CVXR using Mosek for a quadratic minimization problem


I'm trying to solve a Quadratic optimization problem with linear constrains using the R package CVXR. Although the default solver is able to solve the optimization, Mosek solver is not. The reason I'm looking to use Mosek is because I need to solve a bigger problem with more than 250 constrains and the default solver gives an inaccurate solution, so I'm looking to solve the bigger problem with Mosek. Here's a simple example were Mosek is not working:

suppressMessages(suppressWarnings(library(CVXR)))

Problem data

set.seed(10)
n <- 10
SAMPLES <- 100
mu <- matrix(abs(rnorm(n)), nrow = n)
Sigma <- matrix(rnorm(n^2), nrow = n, ncol = n)
Sigma <- t(Sigma) %*% Sigma

Form problem

w <- Variable(n)
ret <- t(mu) %*% w
risk <- quad_form(w, Sigma)
constraints <- list(w >= 0, sum(w) == 1,ret==mean(mu))

Risk aversion parameters

prob <- Problem(Minimize(risk), constraints)
result <- solve(prob,solver='MOSEK')

It gives the following error.

 Error in py_call_impl(callable, dots$args, dots$keywords) : 
  TypeError: 'int' object is not iterable 
10.stop(structure(list(message = "TypeError: 'int' object is not iterable", 
    call = py_call_impl(callable, dots$args, dots$keywords), 
    cppstack = structure(list(file = "", line = -1L, stack = c("1   reticulate.so                       0x000000010d278f9b _ZN4Rcpp9exceptionC2EPKcb + 219", 
    "2   reticulate.so                       0x000000010d27fa35 _ZN4Rcpp4stopERKNSt3__112basic_stringIcNS0_11char_traitsIcEENS0_9allocatorIcEEEE + 53",  ... 
9.mosek_intf at mosekglue.py#51
8.get_mosekglue()$mosek_intf(reticulate::r_to_py(A), b, reticulate::r_to_py(G), 
    h, c, dims, offset, reticulate::dict(solver_opts), verbose) 
7.Solver.solve(solver, objective, constraints, [email protected]_data, 
    warm_start, verbose, ...) 
6.Solver.solve(solver, objective, constraints, [email protected]_data, 
    warm_start, verbose, ...) 
5.CVXR::psolve(a, b, ...) 
4.CVXR::psolve(a, b, ...) 
3.solve.Problem(prob, solver = "MOSEK") 
2.solve(prob, solver = "MOSEK") 
1.solve(prob, solver = "MOSEK")

Somebody knows how to solve it, may be re expressing the problem?

My session info is the following:

R version 3.5.2 (2018-12-20)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.1

Matrix products: default
BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] reticulate_1.10  Matrix_1.2-15    CVXR_0.99-2      e1071_1.7-0.1    rstudioapi_0.9.0
[6] openxlsx_4.1.0  

loaded via a namespace (and not attached):
 [1] Rcpp_1.0.0        lattice_0.20-38   class_7.3-14      gmp_0.5-13.2      R.methodsS3_1.7.1
 [6] grid_3.5.2        R6_2.3.0          jsonlite_1.6      zip_1.0.0         Rmpfr_0.7-2      
[11] R.oo_1.22.0       R.utils_2.7.0     tools_3.5.2       bit64_0.9-7       bit_1.1-14       
[16] compiler_3.5.2    scs_1.1-1         ECOSolveR_0.4    

Thanks


Solution

  • This was indeed a problem in mosekglue.py that was addressed with version CVXR-0.99-3 and up; see changelog

    Here is your example worked out:

    > suppressMessages(suppressWarnings(library(CVXR)))
    > set.seed(10)
    > n <- 10
    > SAMPLES <- 100
    > mu <- matrix(abs(rnorm(n)), nrow = n)
    > Sigma <- matrix(rnorm(n^2), nrow = n, ncol = n)
    > Sigma <- t(Sigma) %*% Sigma
    > w <- Variable(n)
    > ret <- t(mu) %*% w
    > risk <- quad_form(w, Sigma)
    > constraints <- list(w >= 0, sum(w) == 1,ret==mean(mu))
    > prob <- Problem(Minimize(risk), constraints)
    > result <- solve(prob,solver='MOSEK', verbose=TRUE)
    Problem
      Name                   :                 
      Objective sense        : min             
      Type                   : CONIC (conic optimization problem)
      Constraints            : 24              
      Cones                  : 1               
      Scalar variables       : 23              
      Matrix variables       : 0               
      Integer variables      : 0               
    
    Optimizer started.
    Presolve started.
    Linear dependency checker started.
    Linear dependency checker terminated.
    Eliminator - tries                  : 0                 time                   : 0.00            
    Lin. dep.  - tries                  : 1                 time                   : 0.00            
    Lin. dep.  - number                 : 0               
    Presolve terminated. Time: 0.00    
    Problem
      Name                   :                 
      Objective sense        : min             
      Type                   : CONIC (conic optimization problem)
      Constraints            : 24              
      Cones                  : 1               
      Scalar variables       : 23              
      Matrix variables       : 0               
      Integer variables      : 0               
    
    Optimizer  - threads                : 8               
    Optimizer  - solved problem         : the primal      
    Optimizer  - Constraints            : 13
    Optimizer  - Cones                  : 1
    Optimizer  - Scalar variables       : 22                conic                  : 12              
    Optimizer  - Semi-definite variables: 0                 scalarized             : 0               
    Factor     - setup time             : 0.00              dense det. time        : 0.00            
    Factor     - ML order time          : 0.00              GP order time          : 0.00            
    Factor     - nonzeros before factor : 89                after factor           : 91              
    Factor     - dense dim.             : 0                 flops                  : 2.54e+03        
    ITE PFEAS    DFEAS    GFEAS    PRSTATUS   POBJ              DOBJ              MU       TIME  
    0   1.0e+00  6.9e+00  1.0e+00  0.00e+00   2.756709152e+01   2.756709152e+01   1.0e+00  0.00  
    1   2.7e-01  1.8e+00  2.2e-01  -6.02e-01  -9.936262607e+00  4.762263760e+00   2.7e-01  0.00  
    2   9.9e-02  6.8e-01  4.3e-01  1.23e+00   9.201188225e-01   -6.807855573e-01  9.9e-02  0.00  
    3   3.6e-02  2.5e-01  4.4e-01  1.97e+00   -1.264256365e-01  -5.225584219e-01  3.6e-02  0.00  
    4   9.2e-03  6.3e-02  1.8e-01  2.33e+00   2.868592743e-01   2.542157558e-01   9.2e-03  0.00  
    5   2.0e-03  1.4e-02  8.8e-02  1.17e+00   2.840102253e-01   2.769232377e-01   2.0e-03  0.00  
    6   3.7e-04  2.5e-03  3.9e-02  1.04e+00   2.879204145e-01   2.866174921e-01   3.7e-04  0.00  
    7   6.3e-05  4.3e-04  1.6e-02  1.02e+00   2.901039465e-01   2.898751147e-01   6.3e-05  0.00  
    8   1.3e-05  8.8e-05  7.4e-03  1.00e+00   2.902381000e-01   2.901914751e-01   1.3e-05  0.00  
    9   3.6e-06  2.5e-05  4.0e-03  1.00e+00   2.902501323e-01   2.902366424e-01   3.6e-06  0.00  
    10  1.1e-06  7.4e-06  2.2e-03  1.00e+00   2.902666158e-01   2.902625442e-01   1.1e-06  0.00  
    11  3.6e-07  2.5e-06  1.3e-03  1.00e+00   2.902689540e-01   2.902675850e-01   3.6e-07  0.00  
    12  5.7e-08  3.9e-07  5.1e-04  1.00e+00   2.902716546e-01   2.902714343e-01   5.7e-08  0.00  
    13  6.6e-09  4.6e-08  1.7e-04  1.00e+00   2.902720234e-01   2.902719974e-01   6.6e-09  0.00  
    Optimizer terminated. Time: 0.00    
    
    
    Interior-point solution summary
      Problem status  : PRIMAL_AND_DUAL_FEASIBLE
      Solution status : OPTIMAL
      Primal.  obj: 2.9027202344e-01    nrm: 1e+00    Viol.  con: 6e-09    var: 0e+00    cones: 0e+00  
      Dual.    obj: 2.9027199740e-01    nrm: 1e+01    Viol.  con: 0e+00    var: 8e-08    cones: 0e+00  
    > result$value
    [1] 0.290272
    >