Say i want to join 3 tables A,B,C with inner join and C being very small.
#DUMMY EXAMPLE with IN-MEMORY table, but same issue if load table using spark.read.parquet("")
var A = (1 to 1000000).toSeq.toDF("A")
var B = (1 to 1000000).toSeq.toDF("B")
var C = (1 to 10).toSeq.toDF("C")
And i have no control of which order the join is brought to me :
CASE1 = A.join(B,expr("A=B"),"inner").join(C,expr("A=C"),"inner")
CASE2 = A.join(C,expr("A=C"),"inner").join(B,expr("A=B"),"inner")
Running both show CASE1 run 30-40% slower than CASE2.
So the question is: how to leverage Spark's CBO to automatically translate CASE1 as CASE2 for in-memory table or table loaded from Spark's parquet reader?
I have tried doing :
spark.conf.set("spark.sql.autoBroadcastJoinThreshold", -1)
spark.conf.set("spark.sql.cbo.enabled", "true")
A.createOrReplaceTempView("A")
spark.sql("ANALYZE TABLE A COMPUTE STATISTICS")
but this throws :
org.apache.spark.sql.catalyst.analysis.NoSuchTableException: Table or view 'a' not found in database 'default'
Any other way to activate CBO without having to save the table in Hive?
Annex:
CASE1.explain
== Physical Plan ==
*(5) SortMergeJoin [A#3], [C#13], Inner
:- *(3) SortMergeJoin [A#3], [B#8], Inner
: :- *(1) Sort [A#3 ASC NULLS FIRST], false, 0
: : +- Exchange hashpartitioning(A#3, 200)
: : +- LocalTableScan [A#3]
: +- *(2) Sort [B#8 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(B#8, 200)
: +- LocalTableScan [B#8]
+- *(4) Sort [C#13 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(C#13, 200)
+- LocalTableScan [C#13]
CASE2.explain
== Physical Plan ==
*(5) SortMergeJoin [A#3], [B#8], Inner
:- *(3) SortMergeJoin [A#3], [C#13], Inner
: :- *(1) Sort [A#3 ASC NULLS FIRST], false, 0
: : +- Exchange hashpartitioning(A#3, 200)
: : +- LocalTableScan [A#3]
: +- *(2) Sort [C#13 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(C#13, 200)
: +- LocalTableScan [C#13]
+- *(4) Sort [B#8 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(B#8, 200)
+- LocalTableScan [B#8]
No, short answer is that this is not possible.
This https://databricks.com/blog/2017/08/31/cost-based-optimizer-in-apache-spark-2-2.html provides an excellent overview of what is possible and the point on persisted data stores.