Search code examples
machine-learningclassificationweka

Arff file format weka


I am doing my machine learning homework and I am using Weka which I am very new to. I am trying to use M5P but the classifier is grayed out. I understand that means that the file im using is incorrect whether it be format or parameters. Can someone help me fix my arff file? I'm pretty sure the problem is within the attribute section. Here it is.

    @relation world_happiness
@attribute M5P
@attribute continent {Americas, Africa, Asia, Europe, Australia, Antarctica}
@attribute country string
@attribute SWL-ranking numeric
@attribute SWL-index numeric
@attribute life-expectancy numeric
@attribute GDP-per-capita numeric
@attribute access-to-education-score numeric

@data
Europe,'Albania',157,153.33,73.8,4.9,75.8
Africa,'Algeria',134,173.33,71.1,7.2,66.9
Africa,'Angola',149,160,40.8,3.2,?
Americas, 'Antigua And Barbuda',16,246.67,73.9,11,?
Americas,'Argentina',56,226.67,74.5,13.1,93.7
Europe,'Armenia',172,123.33,71.5,4.5,?
Australia,'Australia',26,243.33,80.3,31.9,?
Europe,'Austria',3,260,79,32.7,99.1
Asia,'Azerbaijan',144,163.33,66.9,4.8,80.2
Americas,'Bahamas',5,256.67,69.7,20.2,?
Asia,'Bahrain',33,240,74.3,23,102
Asia,'Bangladesh',104,190,62.8,2.1,53.7
Americas,'Barbados',27,243.33,75,17,101.1
Europe,'Belarus',170,133.33,68.1,6.9,94.2
Europe,'Belgium',28,243.33,78.9,31.4,145.4
Americas,'Belize',48,230,71.9,6.8,71.6
Africa,'Benin',122,180,54,1.1,21.8
Asia,'Bhutan',8,253.33,62.9,1.4,?
Americas,'Bolivia',117,183.33,64.1,2.9,?
Europe, 'Bosnia & Herzegovina',137,170,74.2,6.8,?
Africa,'Botswana',123,180,36.3,10.5,81.8
Americas,'Brazil',81,210,70.5,8.4,103.2
Asia, 'Brunei Darussalam',9,253.33,76.4,23.6,?
Europe,'Bulgaria',164,143.33,72.2,9.6,92
Africa, 'Burkina Faso',152,156.67,47.5,1.3,10
Asia,'Burma',130,176.67,60.2,1.7,?
Africa,'Burundi',178,100,43.6,0.7,?
Asia,'Cambodia',110,186.67,56.2,2.2,17.3
Africa,'Cameroon',138,170,45.8,2.4,?
Americas,'Canada',10,253.33,80,34,102.6
Africa, 'Cape Verdi',100,193.33,70.4,6.2,?
Africa, 'Central African Republic',145,163.33,39.3,1.1,?
Africa,'Chad',159,150,43.6,1.5,11.5
Americas,'Chile',71,216.67,77.9,11.3,87.5
Asia,'China',82,210,71.6,6.8,62.8
Americas,'Colombia',34,240,72.4,7.9,70.9
Africa,'Comoros',97,196.67,63.2,0.6,?
Africa, 'Congo Democratic Republic',176,110,43.1,0.7,18.4
Africa, 'Congo Republic',105,190,52,1.3,?
Americas, 'Costa Rica',13,250,78.2,11.1,50.9
Europe,'Croatia',98,196.67,75,11.6,?
Americas,'Cuba',83,210,77.3,3.5,?
Europe,'Cyprus',49,230,78.6,7.14,?
Europe, 'Czech Republic',77,213.33,75.6,19.5,87.9
Europe,'Denmark',1,273.33,77.2,34.6,?
Africa,'Dijbouti',150,160,52.8,1.3,14.7
Americas,'Dominica',29,243.33,75.6,5.5,?
Americas, 'Dominican Republic',42,233.33,67.2,7,?
Americas,'Ecuador',111,186.67,74.3,4.3,56.7
Africa,'Egypt',151,160,69.8,3.9,?
Americas, 'El Salvador',61,220,70.9,4.7,49.8
Africa, 'Equatorial Guinea',135,173.33,43.3,50.2,?
Africa,'Eritrea',162,146.67,53.8,1,28.2
Europe,'Estonia',139,170,71.3,16.7,107
Africa,'Ethiopia',153,156.67,47.6,0.9,5.2
Australia, 'Fiji',57,223.33,67.8,6,?
Europe,'Finland',6,256.67,78.5,30.9,124.5
Europe,'France',62,220,79.5,29.9,108.7
Africa,'Gabon',88,206.67,54.5,6.8,54.4
Africa,'Gambia',106,190,55.7,1.9,27
Europe,'Georgia',169,136.67,70.5,3.3,77.7
Europe,'Germany',35,240,78.7,30.4,99
Africa,'Ghana',89,206.67,56.8,2.5,37.3
Europe,'Greece',84,210,78.3,22.2,94.6
Americas,'Grenada',72,216.67,65.3,5,?
Americas,'Guatemala',43,233.33,67.3,4.7,32.7
Africa,'Guinea',140,170,53.7,2,?
Africa,'Guinea-Bissau',124,180,44.7,0.8,20.4
Americas,'Guyana',36,240,63.1,4.6,81
Americas,'Haiti',118,183.33,51.6,1.7,?
Americas,'Honduras',37,240,67.8,2.9,?
Asia, 'Hong Kong',63,220,81.6,32.9,?
Europe,'Hungary',107,190,72.7,16.3,98.6
Europe,'Iceland',4,260,80.7,35.6,108.8
Asia,'India',125,180,63.3,3.3,49.9
Asia,'Indonesia',64,220,66.8,3.6,?
Asia,'Iran',96,200,70.4,8.3,80
Europe,'Ireland',11,253.33,77.7,41,123.1
Asia,'Israel',58,223.33,79.7,24.6,93
Europe,'Italy',50,230,80.1,29.2,92.8
Africa, 'Ivory Coast',160,150,45.9,1.6,21.7
Americas,'Jamaica',44,233.33,70.8,4.4,83.6
Asia,'Japan',90,206.67,82,31.5,102.1
Asia,'Jordan',141,170,71.3,4.7,87.7
Asia,'Kazakhstan',101,193.33,63.2,8.2,87
Africa,'Kenya',112,186.67,47.2,1.1,?
Asia,'Kuwait',38,240,76.9,19.2,55.6
Asia,'Kyrgyzstan',65,220,66.8,2.1,83
Asia,'Laos',126,180,54.7,1.9,35.6
Europe,'Latvia',154,156.67,71.6,13.2,88.9
Asia,'Lebanon',113,186.67,72,6.2,78.2
Africa,'Lesotho',165,143.33,36.3,2.5,28
Africa,'Libya',108,190,73.6,11.4,?
Europe,'Lithuania',155,156.67,72.3,13.7,93.4
Europe,'Luxembourg',12,253.33,78.5,55.6,95.3
Europe,'Macedonia',146,163.33,73.8,7.8,?
Africa,'Madagascar',103,193.33,55.4,0.9,?
Africa,'Malawi',158,153.33,39.7,0.6,?
Asia,'Malaysia',17,246.67,73.2,12.1,98.8
Asia,'Maldives',66,220,66.6,3.9,42.7
Africa,'Mali',131,176.67,47.9,1.2,15
Europe,'Malta',14,250,78.4,19.9,90.4
Africa,'Mauritania',132,176.67,52.7,2.2,?
Africa,'Mauritius',73,216.67,72.2,13.1,107.3
Americas,'Mexico',51,230,75.1,10,73.4
Europe,'Moldova',175,116.67,67.7,1.8,?
Asia,'Mongolia',59,223.33,64,1.9,64.4
Africa,'Morocco',114,186.67,69.7,4.2,39.3
Africa,'Mozambique',127,180,41.9,1.3,13.9
Africa,'Namibia',74,216.67,48.3,7,59.8
Asia,'Nepal',119,183.33,61.6,1.4,53.9
Europe,'Netherlands',15,250,78.4,30.5,124.1
Australia,' New Zealand',18,246.67,79.1,25.2,112.9
Americas,'Nicaragua',85,210,69.7,2.9,?
Africa,'Niger',161,150,44.4,0.9,?
Africa,'Nigeria',120,183.33,43.4,1.4,?
Europe,'Norway',19,246.67,79.4,42.3,117
Asia,'Oman',30,243.33,74.1,13.2,67.8
Asia,'Pakistan',166,143.33,63,2.4,39
Asia,'Palestine',128,180,72.5,5.8,80.7
Americas,'Panama',39,240,74.8,7.2,68.7
Australia, 'Papua New Guinea',86,210,55.3,2.6,21.2
Americas,'Paraguay',75,216.67,71,4.9,56.9
Americas,'Peru',115,186.67,70,5.9,80.8
Asia,'Philippines',78,213.33,70.4,5.1,75.9
Europe,'Poland',99,196.67,74.3,13.3,?
Europe,'Portugal',92,203.33,77.2,19.3,112
Asia,'Qatar',45,233.33,72.8,27.4,92.4
Europe,'Romania',136,173.33,71.3,8.2,80.2
Europe,'Russia',167,143.33,65.3,11.1,81.9
Africa,'Rwanda',163,146.67,43.9,1.5,12.1
Australia, 'Samoa Western',52,230,70.2,5.8,76
Africa, 'Sao Tome And Principe',60,223.33,63,1.2,?
Asia, 'Saudi Arabia',31,243.33,71.8,12.8,68.5
Africa,'Senegal',116,186.67,55.7,1.8,19.5
Africa,'Seychelles',20,246.67,72.7,7.8,?
Africa, 'Sierra Leone',143,166.67,40.8,0.8,23.9
Asia,'Singapore',53,230,78.7,28.1,?
Europe,'Slovakia',129,180,74,16.1,86.6
Europe,'Slovenia',67,220,76.4,21.6,98.8
Australia, 'Solomon Islands',54,230,62.3,1.7,?
Africa, 'South Africa',109,190,48.4,12,90.2
Asia, 'South Korea',102,193.33,77,20.4,97.4
Europe,'Spain',46,233.33,79.5,25.5,112.8
Asia, 'Sri Lanka',93,203.33,74,4.3,?
Americas, 'St Kitts And Nevis',21,246.67,70,8.8,?
Americas, 'St Lucia',47,233.33,72.4,5.4,94.3
Americas, 'St Vincent And The Grenadines',40,240,71.1,2.9,?
Africa,'Sudan',173,120,56.4,2.1,28.8
Americas,'Suriname',32,243.33,69.1,4.1,50.7
Africa,'Swaziland',168,140,32.5,5,?
Europe,'Sweden',7,256.67,80.2,29.8,152.8
Europe,'Switzerland',2,273.33,80.5,32.3,99.9
Asia,'Syria',142,170,73.3,3.9,42
Asia,'Taiwan',68,220,76.1,27.6,?
Asia,'Tajikistan',94,203.33,63.6,1.2,76
Africa,'Tanzania',121,183.33,46,0.7,5.31
Asia,'Thailand',76,216.67,70,8.3,79
Asia,'Timor-Leste',69,220,65.5,0.4,?
Africa,'Togo',147,163.33,54.3,1.7,?
Australia,' Tonga',70,220,72.2,2.3,?
Americas, 'Trinidad And Tobago',55,230,69.9,16.7,78.4
Africa,'Tunisia',79,213.33,73.3,8.3,74.6
Europe,'Turkey',133,176.67,68.7,8.2,?
Asia,'Turkmenistan',171,133.33,62.4,8,?
Asia,'Uae',22,246.67,78,43.4,74.4
Africa,'Uganda',156,156.67,47.3,1.8,?
Europe,'Ukraine',174,120,66.1,7.2,92.8
Europe, 'United Kingdom',41,236.67,78.4,30.3,157.2
Americas,'Uruguay',87,210,75.4,9.6,91.6
Americas,'Usa',23,246.67,77.4,41.8,94.6
Asia,'Uzbekistan',80,213.33,66.5,1.8,?
Australia,' Vanuatu',24,246.67,68.6,2.9,28.5
Americas,'Venezuela',25,246.67,72.9,6.1,?
Asia,'Vietnam',95,203.33,70.5,2.8,64.6
Asia,'Yemen',91,206.67,60.6,0.9,?
Africa,'Zambia',148,163.33,37.5,0.9,25.5
Africa,'Zimbabwe',177,110,36.9,2.3,45.3

Solution

  • You don't need the M5P line. That's not an attribute. Just omit line 2.

    Country has some problem: I get the message "Attribute is neither numeric or nominal". (I see you have it as string, so that's right). But when I remove the country attribute, then I can run M5P. (3 rules, correlation = .85).

    Now, you may be thinking "but I want to keep track of what country my predictions are for". Here's how to do that:

    First, set up the filtered classifier to remove attribute 2 (country) and run M5P: enter image description here

    Second, under more options, choose to Output predictions, choosing a format. Here I chose CSV (comma separated values), and then right clicked to select all attributes (first-last) to output.

    enter image description here

    Now Start the model. This gives you actual, predicted, and all the data, including the country name:

    enter image description here